Structure-aware protein–protein interaction site prediction using deep graph convolutional network

计算机科学 源代码 卷积神经网络 深度学习 人工智能 残余物 数据挖掘 图形 机器学习 理论计算机科学 算法 操作系统
作者
Qianmu Yuan,Jianwen Chen,Huiying Zhao,Yaoqi Zhou,Yuedong Yang
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:38 (1): 125-132 被引量:178
标识
DOI:10.1093/bioinformatics/btab643
摘要

Abstract Motivation Protein–protein interactions (PPI) play crucial roles in many biological processes, and identifying PPI sites is an important step for mechanistic understanding of diseases and design of novel drugs. Since experimental approaches for PPI site identification are expensive and time-consuming, many computational methods have been developed as screening tools. However, these methods are mostly based on neighbored features in sequence, and thus limited to capture spatial information. Results We propose a deep graph-based framework deep Graph convolutional network for Protein–Protein-Interacting Site prediction (GraphPPIS) for PPI site prediction, where the PPI site prediction problem was converted into a graph node classification task and solved by deep learning using the initial residual and identity mapping techniques. We showed that a deeper architecture (up to eight layers) allows significant performance improvement over other sequence-based and structure-based methods by more than 12.5% and 10.5% on AUPRC and MCC, respectively. Further analyses indicated that the predicted interacting sites by GraphPPIS are more spatially clustered and closer to the native ones even when false-positive predictions are made. The results highlight the importance of capturing spatially neighboring residues for interacting site prediction. Availability and implementation The datasets, the pre-computed features, and the source codes along with the pre-trained models of GraphPPIS are available at https://github.com/biomed-AI/GraphPPIS. The GraphPPIS web server is freely available at https://biomed.nscc-gz.cn/apps/GraphPPIS. Supplementary information Supplementary data are available at Bioinformatics online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
CT发布了新的文献求助10
1秒前
在水一方应助追寻的书竹采纳,获得10
1秒前
小二郎应助整齐碧玉采纳,获得10
1秒前
3秒前
3秒前
密林小叶子完成签到,获得积分10
3秒前
3秒前
3秒前
MchemG应助科研通管家采纳,获得30
4秒前
超帅孱应助科研通管家采纳,获得10
4秒前
大个应助科研通管家采纳,获得10
4秒前
wanci应助科研通管家采纳,获得10
4秒前
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
大白应助科研通管家采纳,获得10
4秒前
Ava应助科研通管家采纳,获得10
4秒前
Orange应助科研通管家采纳,获得30
4秒前
无极微光应助科研通管家采纳,获得20
4秒前
4秒前
Jasper应助科研通管家采纳,获得10
4秒前
4秒前
CipherSage应助科研通管家采纳,获得10
4秒前
gengen应助科研通管家采纳,获得10
4秒前
4秒前
trumning应助科研通管家采纳,获得10
4秒前
BowieHuang应助科研通管家采纳,获得10
5秒前
研友_VZG7GZ应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
BowieHuang应助科研通管家采纳,获得10
5秒前
桐桐应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
852应助科研通管家采纳,获得10
5秒前
ding应助科研通管家采纳,获得100
5秒前
trumning应助科研通管家采纳,获得10
5秒前
5秒前
量子星尘发布了新的文献求助30
5秒前
Ava应助科研通管家采纳,获得10
5秒前
5秒前
stiger应助科研通管家采纳,获得20
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719256
求助须知:如何正确求助?哪些是违规求助? 5255673
关于积分的说明 15288302
捐赠科研通 4869143
什么是DOI,文献DOI怎么找? 2614653
邀请新用户注册赠送积分活动 1564667
关于科研通互助平台的介绍 1521894