H3K4me3
基因敲除
生物
小发夹RNA
癌症研究
黑色素瘤
下调和上调
异位表达
细胞培养
基因表达
遗传学
基因
发起人
作者
Vipin Rawat,Parmanand Malvi,Dipankar Manna,Eddy S. Yang,Suresh Bugide,Xuchen Zhang,Romi Gupta,Narendra Wajapeyee
出处
期刊:Oncogene
[Springer Nature]
日期:2021-03-05
卷期号:40 (13): 2448-2462
被引量:25
标识
DOI:10.1038/s41388-021-01683-y
摘要
Metabolic deregulation, a hallmark of cancer, fuels cancer cell growth and metastasis. Here, we show that phosphoserine phosphatase (PSPH), an enzyme of the serine metabolism pathway, is upregulated in patient-derived melanoma samples. PSPH knockdown using short hairpin RNAs (shRNAs) blocks melanoma tumor growth and metastasis in both cell culture and mice. To elucidate the mechanism underlying PSPH action, we evaluated PSPH shRNA-expressing melanoma cells using global metabolomics and targeted mRNA expression profiling. Metabolomics analysis showed an increase in 2-hydroxyglutarate (2-HG) levels in PSPH knockdown cells. 2-HG inhibits the TET family of DNA demethylases and the Jumonji family of histone demethylases (KDM and JMJD), which is known to impact gene expression. Consistent with these data, PSPH knockdown in melanoma cells showed reduced DNA 5-hydroxymethylcytosine (5hmC) and increased histone H3K4me3 modifications. 2-HG treatment also inhibited melanoma growth. The nCounter PanCancer Pathways Panel-based mRNA expression profiling revealed attenuation of a number of cancer-promoting pathways upon PSPH knockdown. In particular, PSPH was necessary for nuclear receptor NR4A1 expression. Ectopic NR4A1 expression partly rescued the growth of melanoma cells expressing PSPH shRNA. Collectively, these results link PSPH to the facilitation of melanoma growth and metastasis through suppression of 2-HG and thus activation of pro-oncogenic gene expression.
科研通智能强力驱动
Strongly Powered by AbleSci AI