癌症
中性粒细胞胞外陷阱
蛋白酵素
癌症研究
中性粒细胞弹性蛋白酶
生物
化学
炎症
癌细胞
免疫学
酶
生物化学
遗传学
作者
Brice Korkmaz,Anne‐Sophie Lamort,Roxane Domain,Céline Beauvillain,Artur Giełdoń,Ali Önder Yildirim,Georgios T. Stathopoulos,Moez Rhimi,Dieter E. Jenne,Ralph Kettritz
标识
DOI:10.1016/j.bcp.2021.114803
摘要
Epidemiological studies established an association between chronic inflammation and higher risk of cancer. Inhibition of proteolytic enzymes represents a potential treatment strategy for cancer and prevention of cancer metastasis. Cathepsin C (CatC) is a highly conserved lysosomal cysteine dipeptidyl aminopeptidase required for the activation of pro-inflammatory neutrophil serine proteases (NSPs, elastase, proteinase 3, cathepsin G and NSP-4). NSPs are locally released by activated neutrophils in response to pathogens and non-infectious danger signals. Activated neutrophils also release neutrophil extracellular traps (NETs) that are decorated with several neutrophil proteins, including NSPs. NSPs are not only NETs constituents but also play a role in NET formation and release. Although immune cells harbor large amounts of CatC, additional cell sources for this protease exists. Upregulation of CatC expression was observed in different tissues during carcinogenesis and correlated with metastasis and poor patient survival. Recent mechanistic studies indicated an important interaction of tumor-associated CatC, NSPs, and NETs in cancer development and metastasis and suggested CatC as a therapeutic target in a several cancer types. Cancer cell-derived CatC promotes neutrophil recruitment in the inflammatory tumor microenvironment. Because the clinical consequences of genetic CatC deficiency in humans resulting in the elimination of NSPs are mild, small molecule inhibitors of CatC are assumed as safe drugs to reduce the NSP burden. Brensocatib, a nitrile CatC inhibitor is currently tested in a phase 3 clinical trial as a novel anti-inflammatory therapy for patients with bronchiectasis. However, recently developed CatC inhibitors possibly have protective effects beyond inflammation. In this review, we describe the pathophysiological function of CatC and discuss molecular mechanisms substantiating pharmacological CatC inhibition as a potential strategy for cancer treatment.
科研通智能强力驱动
Strongly Powered by AbleSci AI