Boosting methods for multi-class imbalanced data classification: an experimental review

Boosting(机器学习) 机器学习 计算机科学 人工智能 集成学习 梯度升压 班级(哲学) 公制(单位) 二进制数 二元分类 多类分类 数据挖掘 支持向量机 随机森林 数学 运营管理 算术 经济
作者
Jafar Tanha,Yousef Abdi,Negin Samadi,Nazila Razzaghi,Mohammad Asadpour
出处
期刊:Journal of Big Data [Springer Science+Business Media]
卷期号:7 (1) 被引量:308
标识
DOI:10.1186/s40537-020-00349-y
摘要

Abstract Since canonical machine learning algorithms assume that the dataset has equal number of samples in each class, binary classification became a very challenging task to discriminate the minority class samples efficiently in imbalanced datasets. For this reason, researchers have been paid attention and have proposed many methods to deal with this problem, which can be broadly categorized into data level and algorithm level. Besides, multi-class imbalanced learning is much harder than binary one and is still an open problem. Boosting algorithms are a class of ensemble learning methods in machine learning that improves the performance of separate base learners by combining them into a composite whole. This paper’s aim is to review the most significant published boosting techniques on multi-class imbalanced datasets. A thorough empirical comparison is conducted to analyze the performance of binary and multi-class boosting algorithms on various multi-class imbalanced datasets. In addition, based on the obtained results for performance evaluation metrics and a recently proposed criteria for comparing metrics, the selected metrics are compared to determine a suitable performance metric for multi-class imbalanced datasets. The experimental studies show that the CatBoost and LogitBoost algorithms are superior to other boosting algorithms on multi-class imbalanced conventional and big datasets, respectively. Furthermore, the MMCC is a better evaluation metric than the MAUC and G-mean in multi-class imbalanced data domains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
梁某完成签到,获得积分10
1秒前
2秒前
青炀应助爱科研采纳,获得10
2秒前
He完成签到 ,获得积分10
3秒前
5秒前
sophyia发布了新的文献求助10
5秒前
老板别打烊完成签到,获得积分10
6秒前
朱朱朱完成签到,获得积分10
9秒前
包勇发布了新的文献求助10
9秒前
10秒前
wei发布了新的文献求助10
11秒前
13秒前
13秒前
善学以致用应助陈江河采纳,获得10
14秒前
14秒前
烟花应助踏山河采纳,获得10
14秒前
体贴花卷发布了新的文献求助10
15秒前
16秒前
独特雨灵完成签到,获得积分20
18秒前
阳光蛋挞发布了新的文献求助10
18秒前
20秒前
小猪发布了新的文献求助10
20秒前
21秒前
Ma发布了新的文献求助10
22秒前
22秒前
怕孤单的安蕾完成签到 ,获得积分10
24秒前
25秒前
陈江河发布了新的文献求助10
25秒前
26秒前
Zjjj0812发布了新的文献求助10
27秒前
27秒前
27秒前
梁海萍发布了新的文献求助10
28秒前
28秒前
灵巧雨寒完成签到,获得积分10
29秒前
赘婿应助Zjjj0812采纳,获得10
29秒前
斯文败类应助Ma采纳,获得10
30秒前
爆米花应助lijyuuu采纳,获得10
30秒前
踏山河发布了新的文献求助10
30秒前
Ice发布了新的文献求助10
32秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 800
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III – Liver, Biliary Tract, and Pancreas, 3rd Edition 400
Elliptical Fiber Waveguides 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4171475
求助须知:如何正确求助?哪些是违规求助? 3706954
关于积分的说明 11695834
捐赠科研通 3392549
什么是DOI,文献DOI怎么找? 1860819
邀请新用户注册赠送积分活动 920545
科研通“疑难数据库(出版商)”最低求助积分说明 832754