已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Boosting methods for multi-class imbalanced data classification: an experimental review

Boosting(机器学习) 机器学习 计算机科学 人工智能 集成学习 梯度升压 班级(哲学) 公制(单位) 二进制数 二元分类 多类分类 数据挖掘 支持向量机 随机森林 数学 运营管理 算术 经济
作者
Jafar Tanha,Yousef Abdi,Negin Samadi,Nazila Razzaghi,Mohammad Asadpour
出处
期刊:Journal of Big Data [Springer Nature]
卷期号:7 (1) 被引量:308
标识
DOI:10.1186/s40537-020-00349-y
摘要

Abstract Since canonical machine learning algorithms assume that the dataset has equal number of samples in each class, binary classification became a very challenging task to discriminate the minority class samples efficiently in imbalanced datasets. For this reason, researchers have been paid attention and have proposed many methods to deal with this problem, which can be broadly categorized into data level and algorithm level. Besides, multi-class imbalanced learning is much harder than binary one and is still an open problem. Boosting algorithms are a class of ensemble learning methods in machine learning that improves the performance of separate base learners by combining them into a composite whole. This paper’s aim is to review the most significant published boosting techniques on multi-class imbalanced datasets. A thorough empirical comparison is conducted to analyze the performance of binary and multi-class boosting algorithms on various multi-class imbalanced datasets. In addition, based on the obtained results for performance evaluation metrics and a recently proposed criteria for comparing metrics, the selected metrics are compared to determine a suitable performance metric for multi-class imbalanced datasets. The experimental studies show that the CatBoost and LogitBoost algorithms are superior to other boosting algorithms on multi-class imbalanced conventional and big datasets, respectively. Furthermore, the MMCC is a better evaluation metric than the MAUC and G-mean in multi-class imbalanced data domains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
罗莹完成签到 ,获得积分10
刚刚
刚刚
君寻完成签到 ,获得积分10
3秒前
Lionnn完成签到 ,获得积分10
4秒前
4秒前
丰富老五发布了新的文献求助10
5秒前
chang完成签到,获得积分10
5秒前
6秒前
7秒前
没有查不到的文献完成签到 ,获得积分10
8秒前
小蘑菇应助Wcy采纳,获得10
8秒前
8秒前
打打应助沉默的可乐采纳,获得10
11秒前
麻辣香锅发布了新的文献求助10
11秒前
llllll发布了新的文献求助10
11秒前
山水之乐发布了新的文献求助10
12秒前
NMD发布了新的文献求助60
13秒前
领导范儿应助健壮小天鹅采纳,获得10
13秒前
14秒前
Skywalker完成签到,获得积分10
15秒前
科研通AI6应助mbf采纳,获得10
16秒前
16秒前
18秒前
19秒前
魏魏发布了新的文献求助10
20秒前
dqbhxwx发布了新的文献求助10
20秒前
xiaolei完成签到 ,获得积分10
21秒前
义气的代曼完成签到,获得积分10
22秒前
xiong完成签到,获得积分10
22秒前
25秒前
受伤筝完成签到 ,获得积分10
25秒前
xiong发布了新的文献求助10
26秒前
cccc完成签到,获得积分10
26秒前
humble完成签到 ,获得积分10
27秒前
llllll完成签到,获得积分10
28秒前
SciGPT应助kaka采纳,获得10
28秒前
29秒前
29秒前
29秒前
充电宝应助风清扬采纳,获得10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5554554
求助须知:如何正确求助?哪些是违规求助? 4639188
关于积分的说明 14655312
捐赠科研通 4580962
什么是DOI,文献DOI怎么找? 2512518
邀请新用户注册赠送积分活动 1487314
关于科研通互助平台的介绍 1458175