亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Automated, Cost-Effective Optical System for Accelerated Antimicrobial Susceptibility Testing (AST) Using Deep Learning

临床微生物学 孵化 抗菌剂 工作流程 金黄色葡萄球菌 抗生素 人工智能 人工神经网络 细菌生长 光纤 金标准(测试) 计算机科学 生物医学工程 生物 医学 微生物学 细菌 内科学 电信 生物化学 遗传学 数据库
作者
Calvin Brown,Derek Tseng,Paige M. K. Larkin,Susan Realegeno,Leanne Mortimer,Arjun Subramonian,Dino Di Carlo,Omai B. Garner,Aydogan Özcan
出处
期刊:ACS Photonics [American Chemical Society]
卷期号:7 (9): 2527-2538 被引量:20
标识
DOI:10.1021/acsphotonics.0c00841
摘要

Antimicrobial susceptibility testing (AST) is a standard clinical procedure used to quantify antimicrobial resistance (AMR). Currently, the gold standard method requires incubation for 18–24 h and subsequent inspection for growth by a trained medical technologist. We demonstrate an automated, cost-effective optical system that delivers early AST results, minimizing incubation time and eliminating human errors, while remaining compatible with standard phenotypic assay workflow. The system is composed of cost-effective components and eliminates the need for optomechanical scanning. A neural network processes the captured optical intensity information from an array of fiber optic cables to determine whether bacterial growth has occurred in each well of a 96-well microplate. When the system was blindly tested on isolates from 33 patients with Staphylococcus aureus infections, 95.03% of all the wells containing growth were correctly identified using our neural network with an average of 5.72 h of incubation time required to identify growth. Ninety percent of all wells (growth and no-growth) were correctly classified after 7 h, and 95% after 10.5 h. Our deep learning-based optical system met the FDA-defined criteria for essential and categorical agreements for all 14 antibiotics tested after an average of 6.13 and 6.98 h, respectively. Furthermore, our system met the FDA criteria for major and very major error rates for 11 of 12 possible drugs after an average of 4.02 h, and 9 of 13 possible drugs after an average of 9.39 h, respectively. This system could enable faster, inexpensive, automated AST, especially in resource-limited settings, helping to mitigate the rise of global AMR.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
3秒前
默默善愁发布了新的文献求助10
4秒前
5秒前
Raunio完成签到,获得积分10
9秒前
七月流火应助默默善愁采纳,获得100
11秒前
13秒前
奈斯发布了新的文献求助50
18秒前
多摩川的烟花少年完成签到,获得积分10
18秒前
23秒前
奈斯完成签到,获得积分10
33秒前
34秒前
shhoing应助科研通管家采纳,获得10
36秒前
38秒前
Henwenwen6完成签到,获得积分10
43秒前
脑洞疼应助Jerry采纳,获得10
46秒前
滋滋发布了新的文献求助50
1分钟前
1分钟前
尼古丁的味道完成签到 ,获得积分10
1分钟前
airsonata完成签到,获得积分10
1分钟前
NLJY完成签到,获得积分10
1分钟前
1分钟前
1分钟前
健健康康完成签到 ,获得积分10
1分钟前
1分钟前
PAIDAXXXX完成签到,获得积分10
1分钟前
2分钟前
樱桃发布了新的文献求助10
2分钟前
jjx1005完成签到 ,获得积分10
2分钟前
xiaolang2004完成签到,获得积分10
2分钟前
2分钟前
善良寒凝发布了新的文献求助10
2分钟前
2分钟前
刻苦海露发布了新的文献求助10
2分钟前
2分钟前
coco发布了新的文献求助10
2分钟前
小马甲应助coco采纳,获得10
2分钟前
CipherSage应助科研通管家采纳,获得10
2分钟前
shhoing应助科研通管家采纳,获得10
2分钟前
shhoing应助科研通管家采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5538628
求助须知:如何正确求助?哪些是违规求助? 4625688
关于积分的说明 14596745
捐赠科研通 4566378
什么是DOI,文献DOI怎么找? 2503215
邀请新用户注册赠送积分活动 1481337
关于科研通互助平台的介绍 1452699