Large‐scale dynamic causal modeling of major depressive disorder based on resting‐state functional magnetic resonance imaging

功能磁共振成像 静息状态功能磁共振成像 磁共振成像 重性抑郁障碍 神经科学 核磁共振 心理学 比例(比率) 医学 物理 放射科 认知 量子力学
作者
Guoshi Li,Yujie Liu,Yan Zheng,Danian Li,Xinyu Liang,Yaoping Chen,Ying Cui,Pew Thian Yap,Shijun Qiu,Han Zhang,Dinggang Shen
出处
期刊:Human Brain Mapping [Wiley]
卷期号:41 (4): 865-881 被引量:47
标识
DOI:10.1002/hbm.24845
摘要

Major depressive disorder (MDD) is a serious mental illness characterized by dysfunctional connectivity among distributed brain regions. Previous connectome studies based on functional magnetic resonance imaging (fMRI) have focused primarily on undirected functional connectivity and existing directed effective connectivity (EC) studies concerned mostly task-based fMRI and incorporated only a few brain regions. To overcome these limitations and understand whether MDD is mediated by within-network or between-network connectivities, we applied spectral dynamic causal modeling to estimate EC of a large-scale network with 27 regions of interests from four distributed functional brain networks (default mode, executive control, salience, and limbic networks), based on large sample-size resting-state fMRI consisting of 100 healthy subjects and 100 individuals with first-episode drug-naive MDD. We applied a newly developed parametric empirical Bayes (PEB) framework to test specific hypotheses. We showed that MDD altered EC both within and between high-order functional networks. Specifically, MDD is associated with reduced excitatory connectivity mainly within the default mode network (DMN), and between the default mode and salience networks. In addition, the network-averaged inhibitory EC within the DMN was found to be significantly elevated in the MDD. The coexistence of the reduced excitatory but increased inhibitory causal connections within the DMNs may underlie disrupted self-recognition and emotional control in MDD. Overall, this study emphasizes that MDD could be associated with altered causal interactions among high-order brain functional networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助勤恳的宛菡采纳,获得10
1秒前
1秒前
冷静幻悲完成签到,获得积分10
1秒前
sherholmes完成签到,获得积分20
1秒前
jialin发布了新的文献求助10
1秒前
maopf发布了新的文献求助10
1秒前
科研通AI5应助可靠吐司采纳,获得10
2秒前
ding应助misalia采纳,获得10
2秒前
2秒前
2秒前
Dr司发布了新的文献求助10
4秒前
麦克完成签到,获得积分20
5秒前
韶冷梅发布了新的文献求助10
5秒前
jialin完成签到,获得积分10
6秒前
赖道之发布了新的文献求助10
6秒前
梁非凡发布了新的文献求助10
6秒前
6秒前
carol7298发布了新的文献求助10
6秒前
Rage_Wang给现代千青的求助进行了留言
6秒前
7秒前
小莫发布了新的文献求助10
7秒前
7秒前
烟花应助缓慢含烟采纳,获得10
7秒前
7秒前
HouYv发布了新的文献求助10
8秒前
8秒前
pigzhu完成签到,获得积分10
9秒前
9秒前
9秒前
脑洞疼应助语上采纳,获得10
10秒前
Pendragon发布了新的文献求助10
10秒前
guoguo完成签到,获得积分10
11秒前
yalin发布了新的文献求助30
11秒前
xgx984完成签到,获得积分10
12秒前
12秒前
Owen应助柳景凇采纳,获得10
12秒前
123完成签到,获得积分10
12秒前
沈小葵发布了新的文献求助10
12秒前
starryxm发布了新的文献求助10
13秒前
13秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793890
求助须知:如何正确求助?哪些是违规求助? 3338779
关于积分的说明 10291508
捐赠科研通 3055175
什么是DOI,文献DOI怎么找? 1676376
邀请新用户注册赠送积分活动 804436
科研通“疑难数据库(出版商)”最低求助积分说明 761869