亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

SHEDR: An End-to-End Neural Event Detection and Recommendation Framework for Hyperlocal News Using Social Media

端到端原则 社会化媒体 计算机科学 事件(粒子物理) 最终用户 死胡同 万维网 人工智能 心理学 物理 社会心理学 量子力学 补偿(心理学)
作者
Yuheng Hu,Yili Hong
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
标识
DOI:10.2139/ssrn.3677461
摘要

Residents often rely on newspapers and television to gather hyperlocal news for community awareness and engagement. More recently, social media have emerged as an increasingly important source of hyperlocal news. Thus far, the Information System (IS) literature on using social media to create desirable societal benefits, such as civic awareness and engagement, is still in its infancy. One key challenge in this research stream is to timely and accurately distill information from noisy social media data streams to community members. In this work, we develop SHEDR (Social Me-dia-based Hyperlocal Event Detection & Recommendation), an end-to-end neural event detection and recommendation framework on Twitter to facilitate residents’ information-seeking of hyperlo-cal events. The key innovation in SHDER lies in the design of the hyperlocal event detector and the event recommender. First, we harness the power of two popular deep neural network models, CNN and LSTM, in a joint CNN-LSTM model to characterize spatial-temporal dependencies for capturing unusualness in a region of interest, which is classified as a hyperlocal event. Next, we develop a neural pair-wise ranking algorithm for recommending detected hyperlocal events t resi-dents based on their interests. To alleviate the sparsity issue and improve personalization, our algo-rithm incorporates several types of contextual information covering topic, social and geographical proximities. We perform comprehensive evaluations based on two large scale datasets comprising geotagged tweets covering Seattle and Chicago. We demonstrate the effectiveness of our frame-work in comparison to several state-of-the-art approaches. We show that our hyperlocal event de-tection and recommendation models consistently and significantly outperform other approaches in terms of precision, recall, and F-1 scores.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐研客完成签到 ,获得积分10
24秒前
科研通AI5应助zyin采纳,获得10
25秒前
小田完成签到 ,获得积分10
29秒前
41秒前
43秒前
44秒前
cczy发布了新的文献求助10
47秒前
无七完成签到,获得积分10
51秒前
研友_VZG7GZ应助郑郑采纳,获得10
57秒前
天凉王破完成签到 ,获得积分10
1分钟前
SiboN完成签到,获得积分10
1分钟前
1分钟前
科研通AI6应助SiboN采纳,获得10
1分钟前
1分钟前
郑郑发布了新的文献求助10
1分钟前
1分钟前
长言完成签到 ,获得积分10
1分钟前
一阳发布了新的文献求助10
1分钟前
ding应助zhang采纳,获得10
1分钟前
儒雅完成签到 ,获得积分10
1分钟前
1分钟前
凶狠的映易完成签到 ,获得积分10
1分钟前
1分钟前
zhang发布了新的文献求助10
1分钟前
1分钟前
cczy完成签到 ,获得积分10
1分钟前
zhang完成签到,获得积分20
1分钟前
1分钟前
搜集达人应助科研通管家采纳,获得10
1分钟前
Ava应助科研通管家采纳,获得10
1分钟前
天天天晴完成签到 ,获得积分10
2分钟前
沉默的延恶完成签到,获得积分10
2分钟前
所所应助郑郑采纳,获得10
2分钟前
2分钟前
郑郑发布了新的文献求助10
2分钟前
tdbjyoung应助李易安采纳,获得10
2分钟前
3分钟前
3分钟前
hhh发布了新的文献求助10
3分钟前
batmanrobin完成签到,获得积分10
3分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5210185
求助须知:如何正确求助?哪些是违规求助? 4387115
关于积分的说明 13662369
捐赠科研通 4246748
什么是DOI,文献DOI怎么找? 2329951
邀请新用户注册赠送积分活动 1327702
关于科研通互助平台的介绍 1280195