Machine learning, artificial intelligence, and data science breaking into drug design and neglected diseases

可解释性 机制(生物学) 计算机科学 转化式学习 机器学习 重新使用 系统生物学 数据科学 人工智能 生化工程 计算生物学 管理科学 工程类 生物 心理学 教育学 哲学 认识论 废物管理
作者
José Peña‐Guerrero,Paul Nguewa,Alfonso T. García‐Sosa
出处
期刊:Wiley Interdisciplinary Reviews: Computational Molecular Science [Wiley]
卷期号:11 (5) 被引量:40
标识
DOI:10.1002/wcms.1513
摘要

Abstract Machine learning (ML) is becoming capable of transforming biomolecular interaction description and calculation, promising an impact on molecular and drug design, chemical biology, toxicology, among others. The first improvements can be seen from biomolecule structure prediction to chemical synthesis, molecular generation, mechanism of action elucidation, inverse design, polypharmacology, organ or issue targeting of compounds, property and multiobjective optimization. Chemical design proposals from an algorithm may be inventive and feasible. Challenges remain, with the availability, diversity, and quality of data being critical for developing useful ML models; marginal improvement seen in some cases, as well as in the interpretability, validation, and reuse of models. The ultimate aim of ML should be to facilitate options for the scientist to propose and undertake ideas and for these to proceed faster. Applications are ripe for transformative results in understudied, neglected, and rare diseases, where new data and therapies are strongly required. Progress and outlook on these themes are provided in this study. This article is categorized under: Structure and Mechanism > Computational Biochemistry and Biophysics Structure and Mechanism > Molecular Structures
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
深情安青应助陈一晨111采纳,获得10
5秒前
5秒前
川口督kie完成签到,获得积分10
5秒前
6秒前
Michaelfall完成签到,获得积分10
6秒前
6秒前
皮尤尤发布了新的文献求助10
8秒前
多多完成签到,获得积分10
9秒前
Kenny发布了新的文献求助10
9秒前
MG_aichy完成签到,获得积分10
9秒前
77驳回了块块应助
9秒前
Van发布了新的文献求助10
10秒前
orixero应助科研通管家采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
小蘑菇应助科研通管家采纳,获得30
12秒前
CodeCraft应助科研通管家采纳,获得10
12秒前
Hello应助科研通管家采纳,获得10
12秒前
桐桐应助科研通管家采纳,获得10
12秒前
小虫学长应助科研通管家采纳,获得10
12秒前
Lucas应助科研通管家采纳,获得10
12秒前
12秒前
郭璠发布了新的文献求助10
12秒前
12秒前
冯微微完成签到,获得积分10
13秒前
星辰大海应助整齐的泽洋采纳,获得10
15秒前
阿坤发布了新的文献求助10
15秒前
酷波er应助欣喜的冥王星采纳,获得10
16秒前
脑洞疼应助皮尤尤采纳,获得10
16秒前
17秒前
amigo完成签到 ,获得积分10
18秒前
yuanzhang完成签到,获得积分10
18秒前
20秒前
20秒前
dox应助郭璠采纳,获得10
22秒前
22秒前
25秒前
呆萌擎宇发布了新的文献求助10
25秒前
26秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838514
求助须知:如何正确求助?哪些是违规求助? 3380889
关于积分的说明 10516101
捐赠科研通 3100459
什么是DOI,文献DOI怎么找? 1707506
邀请新用户注册赠送积分活动 821794
科研通“疑难数据库(出版商)”最低求助积分说明 772947