材料科学
飞秒
惠斯通大桥
激光器
表面微加工
碳化硅
制作
光电子学
表面粗糙度
机械加工
压力传感器
压阻效应
硅
微电子机械系统
光学
复合材料
机械工程
电气工程
工程类
电阻器
病理
物理
电压
冶金
替代医学
医学
作者
Lukang Wang,You Zhao,Yulong Zhao,Yu Yang,Taobo Gong,Le Hao,Wei Ren
出处
期刊:Micromachines
[MDPI AG]
日期:2021-01-06
卷期号:12 (1): 56-56
被引量:27
摘要
Silicon carbide (SiC) has promising potential for pressure sensing in a high temperature and harsh environment due to its outstanding material properties. In this work, a 4H-SiC piezoresistive pressure chip fabricated based on femtosecond laser technology was proposed. A 1030 nm, 200 fs Yb: KGW laser with laser average powers of 1.5, 3 and 5 W was used to drill blind micro holes for achieving circular sensor diaphragms. An accurate per lap feed of 16.2 μm was obtained under laser average power of 1.5 W. After serialized laser processing, the machining depth error of no more than 2% and the surface roughness as low as 153 nm of the blind hole were measured. The homoepitaxial piezoresistors with a doping concentration of 1019 cm−3 were connected by a closed-loop Wheatstone bridge after a rapid thermal annealing process, with a specific contact resistivity of 9.7 × 10−5 Ω cm2. Our research paved the way for the integration of femtosecond laser micromachining and SiC pressure sensor chips manufacturing.
科研通智能强力驱动
Strongly Powered by AbleSci AI