Recent trends in QSAR in Modelling of Drug-Protein and Protein-Protein Interactions

数量结构-活动关系 化学空间 药物发现 计算机科学 药品 计算生物学 生化工程 化学 生物信息学 生物信息学 机器学习 生物 药理学 工程类 生物化学 基因
作者
Shilpi Sharma,Vinayak Bhatia
出处
期刊:Combinatorial Chemistry & High Throughput Screening [Bentham Science Publishers]
卷期号:24 (7): 1031-1041 被引量:5
标识
DOI:10.2174/1386207323666201209093537
摘要

The unprecedented growth in the area of QSAR has completely changed the landscape of drug discovery. QSAR techniques quantitatively correlate the associations between chemical structure alterations and respective changes in biological activity, thereby playing a major role in improving the potency, efficacy and selectivity of the lead compounds in drug design. In this review, authors have summarized the role of QSAR in drug discovery, especially with respect to lead optimization and drug-receptor interactions. The recent trends in the usage of 3D-QSAR to understand Protein-Protein Interactions (PPIs) have been explored. Specifically, the latest advances in the concepts of chemical Space (CS) and chemography have been examined in detail. Also, the authors have tried to present the current limitations and challenges in this field. The authors agree with the prevalent view that the models must be systematically validated both internally as well as externally to strengthen the hit rates in the experiments. It is important to apply the 'in cerebro-in silico' approach that entails choosing the method specific to the target-ligand system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Possession发布了新的文献求助10
刚刚
小米完成签到,获得积分10
1秒前
2秒前
3秒前
上官若男应助金有财采纳,获得10
3秒前
jessica发布了新的文献求助10
4秒前
小蘑菇应助ymu采纳,获得10
4秒前
4秒前
魏海龙完成签到,获得积分10
4秒前
JamesPei应助旺旺一切顺利采纳,获得10
5秒前
小米发布了新的文献求助10
5秒前
科研通AI5应助一一采纳,获得10
5秒前
谷蓝完成签到,获得积分10
5秒前
5秒前
yang完成签到,获得积分10
7秒前
survivaluu完成签到,获得积分10
7秒前
8秒前
NexusExplorer应助科研通管家采纳,获得10
8秒前
8秒前
NexusExplorer应助科研通管家采纳,获得10
9秒前
搜集达人应助科研通管家采纳,获得10
9秒前
Accepted应助科研通管家采纳,获得10
9秒前
斯文败类应助科研通管家采纳,获得10
9秒前
在水一方应助科研通管家采纳,获得10
9秒前
星辰大海应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
领导范儿应助科研通管家采纳,获得10
9秒前
科研助手6应助科研通管家采纳,获得20
10秒前
所所应助科研通管家采纳,获得10
10秒前
10秒前
科研通AI5应助小歪同学采纳,获得30
10秒前
大个应助科研通管家采纳,获得10
10秒前
小马甲应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
华仔应助科研通管家采纳,获得10
10秒前
11秒前
斯文败类应助科研通管家采纳,获得10
11秒前
斯文败类应助科研通管家采纳,获得10
11秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799862
求助须知:如何正确求助?哪些是违规求助? 3345153
关于积分的说明 10323869
捐赠科研通 3061736
什么是DOI,文献DOI怎么找? 1680492
邀请新用户注册赠送积分活动 807113
科研通“疑难数据库(出版商)”最低求助积分说明 763462