亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

STGCN: A Spatial-Temporal Aware Graph Learning Method for POI Recommendation

计算机科学 利用 图形 平滑的 兴趣点 数据挖掘 背景(考古学) 导线 推荐系统 人工智能 机器学习 理论计算机科学 计算机视觉 计算机安全 大地测量学 生物 地理 古生物学
作者
Haoyu Han,Mengdi Zhang,Min Hou,Fuzheng Zhang,Zhongyuan Wang,Enhong Chen,Hongwei Wang,Jianhui Ma,Qi Liu
标识
DOI:10.1109/icdm50108.2020.00124
摘要

Point-of-Interest (POI) recommendation helps users find their interested places to visit based on the time and user location. Unlike traditional recommendation tasks, POI recommendation is personalized, spatial-aware, and temporally dependent. Although many previous works have tried modeling spatial and temporal characteristics, most of them suffer from the following two limitations: For the spatial aspect, existing works only consider the user-POI distance or POI-POI distance. However, we find that a user prefers different regions at different times, which is known as user-region periodic pattern. For the temporal aspect, most works treat user and time as two independent factors. However, different users may prefer the same POI in different time periods, which is known as user-POI periodic pattern. To address the limitation of existing works, we propose a novel Spatial-Temporal aware Graph Convolutional Neural Network (STGCN) for POI recommendation. Specifically, we first design a user record multigraph to fuse all the context information into a unified graph. Then, we propose a time-based neighborhood sampling algorithm and take advantage of the flexible propagation mechanism of GCNs to learn the representations of each node at a specific time. Furthermore, multiple scoring functions are proposed to exploit user-region periodic pattern and user-POI periodic pattern, respectively. We also develop a time smoothing strategy to alleviate the data sparsity problem. Extensive experiments are conducted on two real-world datasets, and the experimental results demonstrate the effectiveness of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
22秒前
25秒前
zzz发布了新的文献求助10
28秒前
33应助科研通管家采纳,获得10
32秒前
33应助科研通管家采纳,获得10
32秒前
33应助科研通管家采纳,获得10
33秒前
33秒前
沙脑完成签到 ,获得积分10
34秒前
尚奇发布了新的文献求助10
35秒前
38秒前
李健的小迷弟应助坚果采纳,获得10
49秒前
尚奇完成签到,获得积分10
1分钟前
剑指东方是为谁应助aXing~~采纳,获得10
1分钟前
养猪大户完成签到 ,获得积分10
1分钟前
1分钟前
感动白开水完成签到,获得积分10
2分钟前
2分钟前
李健的小迷弟应助zhang采纳,获得10
2分钟前
33应助科研通管家采纳,获得10
2分钟前
33应助科研通管家采纳,获得10
2分钟前
曹璐完成签到,获得积分10
2分钟前
zhang完成签到 ,获得积分10
2分钟前
2分钟前
zhang发布了新的文献求助10
2分钟前
3分钟前
思源应助曹璐采纳,获得10
3分钟前
JamesPei应助爱听歌笑寒采纳,获得10
3分钟前
务实书包完成签到,获得积分10
3分钟前
3分钟前
4分钟前
May完成签到,获得积分10
4分钟前
4分钟前
5分钟前
夷希微发布了新的文献求助10
5分钟前
zqq完成签到,获得积分0
5分钟前
5分钟前
黎泱完成签到 ,获得积分10
5分钟前
boshi发布了新的文献求助10
5分钟前
桐桐应助boshi采纳,获得10
5分钟前
李健的粉丝团团长应助Puan采纳,获得10
6分钟前
高分求助中
The world according to Garb 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Mass producing individuality 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3819910
求助须知:如何正确求助?哪些是违规求助? 3362772
关于积分的说明 10418788
捐赠科研通 3081157
什么是DOI,文献DOI怎么找? 1694980
邀请新用户注册赠送积分活动 814788
科研通“疑难数据库(出版商)”最低求助积分说明 768522