Biomolecular condensates undergo a generic shear-mediated liquid-to-solid transition

相变 微流控 化学 丝绸 剪切(地质) 生物物理学 材料科学 纳米技术 化学物理 复合材料 物理 量子力学 生物
作者
Yi Shen,Francesco Simone Ruggeri,Daniele Vigolo,Ayaka Kamada,Seema Qamar,Aviad Levin,Christiane Iserman,Simon Alberti,Peter St George‐Hyslop,Tuomas P. J. Knowles
出处
期刊:Nature Nanotechnology [Nature Portfolio]
卷期号:15 (10): 841-847 被引量:152
标识
DOI:10.1038/s41565-020-0731-4
摘要

Membrane-less organelles resulting from liquid–liquid phase separation of biopolymers into intracellular condensates control essential biological functions, including messenger RNA processing, cell signalling and embryogenesis1–4. It has recently been discovered that several such protein condensates can undergo a further irreversible phase transition, forming solid nanoscale aggregates associated with neurodegenerative disease5–7. While the irreversible gelation of protein condensates is generally related to malfunction and disease, one case where the liquid-to-solid transition of protein condensates is functional, however, is that of silk spinning8,9. The formation of silk fibrils is largely driven by shear, yet it is not known what factors control the pathological gelation of functional condensates. Here we demonstrate that four proteins and one peptide system, with no function associated with fibre formation, have a strong propensity to undergo a liquid-to-solid transition when exposed to even low levels of mechanical shear once present in their liquid–liquid phase separated form. Using microfluidics to control the application of shear, we generated fibres from single-protein condensates and characterized their structural and material properties as a function of shear stress. Our results reveal generic backbone–backbone hydrogen bonding constraints as a determining factor in governing this transition. These observations suggest that shear can play an important role in the irreversible liquid-to-solid transition of protein condensates, shed light on the role of physical factors in driving this transition in protein aggregation-related diseases and open a new route towards artificial shear responsive biomaterials. A generic liquid-to-solid transition process in condensates of proteins and peptides occurs to form fibres when shear is applied.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助网安小趴菜采纳,获得10
刚刚
是江江哥啊完成签到,获得积分10
刚刚
ardejiang发布了新的文献求助10
1秒前
remimazolam发布了新的文献求助10
2秒前
磊磊发布了新的文献求助10
2秒前
妲己在此发布了新的文献求助10
2秒前
陈炫铭应助宋筱羽采纳,获得10
3秒前
Werner完成签到 ,获得积分10
3秒前
领导范儿应助qqqqgc采纳,获得10
4秒前
香蕉觅云应助Claudplz采纳,获得10
4秒前
5秒前
王粒完成签到,获得积分10
5秒前
FU完成签到,获得积分10
7秒前
CipherSage应助陈隆采纳,获得10
7秒前
8秒前
Ava应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
8秒前
大模型应助科研通管家采纳,获得10
8秒前
科研通AI5应助kuu采纳,获得30
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
星星亮应助科研通管家采纳,获得10
9秒前
LMNg6n应助科研通管家采纳,获得50
9秒前
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
星辰大海应助科研通管家采纳,获得10
9秒前
汉堡包应助科研通管家采纳,获得10
9秒前
9秒前
10秒前
蒋彪完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
YuJiao完成签到,获得积分10
11秒前
小蘑菇应助FU采纳,获得10
12秒前
13秒前
13秒前
掺香发布了新的文献求助10
13秒前
关在小黑屋的阝完成签到,获得积分10
14秒前
哭泣嵩发布了新的文献求助10
14秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3817577
求助须知:如何正确求助?哪些是违规求助? 3360882
关于积分的说明 10410010
捐赠科研通 3078935
什么是DOI,文献DOI怎么找? 1690894
邀请新用户注册赠送积分活动 814197
科研通“疑难数据库(出版商)”最低求助积分说明 768065