GANPOP: Generative Adversarial Network Prediction of Optical Properties From Single Snapshot Wide-Field Images

人工智能 基本事实 计算机科学 快照(计算机存储) 成像体模 深度学习 计算机视觉 水准点(测量) 漫反射光学成像 光学 模式识别(心理学) 迭代重建 物理 大地测量学 地理 操作系统
作者
Mason T. Chen,Faisal Mahmood,Jordan Sweer,Nicholas J. Durr
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:39 (6): 1988-1999 被引量:30
标识
DOI:10.1109/tmi.2019.2962786
摘要

We present a deep learning framework for wide-field, content-aware estimation of absorption and scattering coefficients of tissues, called Generative Adversarial Network Prediction of Optical Properties (GANPOP). Spatial frequency domain imaging is used to obtain ground-truth optical properties at 660 nm from in vivo human hands and feet, freshly resected human esophagectomy samples, and homogeneous tissue phantoms. Images of objects with either flat-field or structured illumination are paired with registered optical property maps and are used to train conditional generative adversarial networks that estimate optical properties from a single input image. We benchmark this approach by comparing GANPOP to a single-snapshot optical property (SSOP) technique, using a normalized mean absolute error (NMAE) metric. In human gastrointestinal specimens, GANPOP with a single structured-light input image estimates the reduced scattering and absorption coefficients with 60% higher accuracy than SSOP while GANPOP with a single flat-field illumination image achieves similar accuracy to SSOP. When applied to both in vivo and ex vivo swine tissues, a GANPOP model trained solely on structured-illumination images of human specimens and phantoms estimates optical properties with approximately 46% improvement over SSOP, indicating adaptability to new, unseen tissue types. Given a training set that appropriately spans the target domain, GANPOP has the potential to enable rapid and accurate wide-field measurements of optical properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助科研通管家采纳,获得10
刚刚
chenqi应助科研通管家采纳,获得10
刚刚
李爱国应助科研通管家采纳,获得10
刚刚
Ava应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
刚刚
田子廉完成签到,获得积分10
刚刚
刚刚
刚刚
汉堡包应助yyi1采纳,获得100
2秒前
斯文发糕发布了新的文献求助10
2秒前
万嘉俊发布了新的文献求助20
3秒前
peaches完成签到,获得积分20
4秒前
7秒前
7秒前
慈祥的夏岚完成签到,获得积分10
7秒前
9秒前
27完成签到,获得积分10
9秒前
10秒前
10秒前
11秒前
11秒前
skx发布了新的文献求助10
12秒前
贝拉完成签到,获得积分10
12秒前
13秒前
852应助万嘉俊采纳,获得10
14秒前
figure发布了新的文献求助10
16秒前
威武的戎发布了新的文献求助10
17秒前
17秒前
Glufo发布了新的文献求助10
18秒前
zz完成签到 ,获得积分10
19秒前
zhuzhu完成签到,获得积分10
20秒前
21秒前
21秒前
23秒前
传奇3应助小小菜鸟芬采纳,获得10
23秒前
所所应助cafu采纳,获得10
24秒前
able应助Fun采纳,获得30
24秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5339366
求助须知:如何正确求助?哪些是违规求助? 4476236
关于积分的说明 13930768
捐赠科研通 4371637
什么是DOI,文献DOI怎么找? 2402047
邀请新用户注册赠送积分活动 1394975
关于科研通互助平台的介绍 1366898