亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Modeling spatially anisotropic nonstationary processes in coastal environments based on a directional geographically neural network weighted regression

各向异性 回归 人工神经网络 环境科学 回归分析 空间生态学 空间分析 地理加权回归模型 线性回归 空间异质性 空间变异性 生态学 统计 计算机科学 数学 机器学习 生物 物理 量子力学
作者
Sensen Wu,Zhenhong Du,Yuanyuan Wang,Tao Lin,Feng Zhang,Renyi Liu
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:709: 136097-136097 被引量:19
标识
DOI:10.1016/j.scitotenv.2019.136097
摘要

Quantifying the spatial association between ecological indicators (e.g., chlorophyll-a) and environmental parameters is crucial for explaining the ecological status in coastal ecosystems. Although global and local regression models have been widely used to estimate spatial relationships in marine environmental processes, spatial anisotropy caused by strong coastal-inland environmental gradients has not been investigated. This is very likely to result in incomprehensive characterization of the coastal ecological status. To better quantify the spatially anisotropic nonstationary relationship in coastal environments, a spatial proximity neural network (SPNN) was proposed in this paper to address the nonlinear effects of spatial anisotropy. A directional geographically neural network weighted regression (DGNNWR) model was accordingly developed by combining a geographically neural network weighted regression (GNNWR) with SPNN to incorporate anisotropic impacts into spatial nonstationarity. Modeling of chlorophyll-a in Zhejiang coastal areas of China in the spring over 2015-2017 was conducted to examine its performance. The results demonstrated that DGNNWR achieved a better fitting accuracy and a more adequate prediction ability than ordinary linear regression (OLR), geographically weighted regression (GWR), GNNWR, and anisotropic-based GWR models. Notably, compared to the best comparison model, the fitting error indicators were declined for more than 30% and the fitted R2 was considerably increased from 0.83 to 0.92 using our proposed DGNNWR. The spatial mapping of parameter estimates confirmed that DGNNWR successfully handled the anisotropic nonstationarity in coastal environments and quantified the main driven parameters of Chl-a. Based on the spatially refined relationship between Chl-a and environmental parameters, we further characterized the spatial and temporal distributions of Chl-a in Zhejiang coastal areas in the spring of 2015-2017, and then investigated the impacts of riverine discharges and ocean currents on the spatiotemporal variations of Chl-a. The findings are crucial to formulate appropriate mitigation strategies for eutrophication and are meaningful for the management of coastal ecosystems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助naitangkeke采纳,获得10
4秒前
13秒前
naitangkeke完成签到,获得积分10
14秒前
naitangkeke发布了新的文献求助10
17秒前
19秒前
29秒前
YifanWang应助科研通管家采纳,获得20
50秒前
科研通AI2S应助科研通管家采纳,获得10
50秒前
唐泽雪穗应助科研通管家采纳,获得10
50秒前
50秒前
唐泽雪穗应助科研通管家采纳,获得10
50秒前
唐泽雪穗应助科研通管家采纳,获得10
50秒前
1分钟前
Yuan完成签到 ,获得积分10
1分钟前
Owen应助kk采纳,获得10
1分钟前
BNN1203381110完成签到,获得积分20
1分钟前
kangxu发布了新的文献求助10
1分钟前
Zx_1993完成签到 ,获得积分0
1分钟前
KP完成签到,获得积分10
1分钟前
2分钟前
2分钟前
小苏完成签到,获得积分10
2分钟前
slgg发布了新的文献求助10
2分钟前
2分钟前
小苏发布了新的文献求助10
2分钟前
Tushar完成签到,获得积分10
2分钟前
2分钟前
似水流年发布了新的文献求助10
2分钟前
YifanWang应助科研通管家采纳,获得30
2分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
唐泽雪穗应助科研通管家采纳,获得10
2分钟前
YifanWang应助科研通管家采纳,获得30
2分钟前
唐泽雪穗应助科研通管家采纳,获得10
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
科研通AI5应助似水流年采纳,获得50
3分钟前
爆米花应助学术混子采纳,获得10
3分钟前
CES_SH完成签到,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
高温高圧下融剤法によるダイヤモンド単結晶の育成と不純物の評価 5000
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4728772
求助须知:如何正确求助?哪些是违规求助? 4084956
关于积分的说明 12633475
捐赠科研通 3791993
什么是DOI,文献DOI怎么找? 2094102
邀请新用户注册赠送积分活动 1119899
科研通“疑难数据库(出版商)”最低求助积分说明 996088