亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Modeling spatially anisotropic nonstationary processes in coastal environments based on a directional geographically neural network weighted regression

各向异性 回归 人工神经网络 环境科学 回归分析 空间生态学 空间分析 地理加权回归模型 线性回归 空间异质性 空间变异性 生态学 统计 计算机科学 数学 机器学习 生物 物理 量子力学
作者
Sensen Wu,Zhenhong Du,Yuanyuan Wang,Tao Lin,Feng Zhang,Renyi Liu
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:709: 136097-136097 被引量:19
标识
DOI:10.1016/j.scitotenv.2019.136097
摘要

Quantifying the spatial association between ecological indicators (e.g., chlorophyll-a) and environmental parameters is crucial for explaining the ecological status in coastal ecosystems. Although global and local regression models have been widely used to estimate spatial relationships in marine environmental processes, spatial anisotropy caused by strong coastal-inland environmental gradients has not been investigated. This is very likely to result in incomprehensive characterization of the coastal ecological status. To better quantify the spatially anisotropic nonstationary relationship in coastal environments, a spatial proximity neural network (SPNN) was proposed in this paper to address the nonlinear effects of spatial anisotropy. A directional geographically neural network weighted regression (DGNNWR) model was accordingly developed by combining a geographically neural network weighted regression (GNNWR) with SPNN to incorporate anisotropic impacts into spatial nonstationarity. Modeling of chlorophyll-a in Zhejiang coastal areas of China in the spring over 2015-2017 was conducted to examine its performance. The results demonstrated that DGNNWR achieved a better fitting accuracy and a more adequate prediction ability than ordinary linear regression (OLR), geographically weighted regression (GWR), GNNWR, and anisotropic-based GWR models. Notably, compared to the best comparison model, the fitting error indicators were declined for more than 30% and the fitted R2 was considerably increased from 0.83 to 0.92 using our proposed DGNNWR. The spatial mapping of parameter estimates confirmed that DGNNWR successfully handled the anisotropic nonstationarity in coastal environments and quantified the main driven parameters of Chl-a. Based on the spatially refined relationship between Chl-a and environmental parameters, we further characterized the spatial and temporal distributions of Chl-a in Zhejiang coastal areas in the spring of 2015-2017, and then investigated the impacts of riverine discharges and ocean currents on the spatiotemporal variations of Chl-a. The findings are crucial to formulate appropriate mitigation strategies for eutrophication and are meaningful for the management of coastal ecosystems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Hiraeth完成签到 ,获得积分10
7秒前
研友_Lw7OvL发布了新的文献求助10
8秒前
41秒前
火的信仰发布了新的文献求助10
45秒前
SciGPT应助小车同学采纳,获得10
53秒前
华仔应助火的信仰采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
梅赛德斯奔驰完成签到,获得积分10
1分钟前
幽默的惮发布了新的文献求助30
1分钟前
善学以致用应助幽默的惮采纳,获得10
1分钟前
2分钟前
小车同学发布了新的文献求助10
2分钟前
2分钟前
2分钟前
小车同学完成签到,获得积分20
2分钟前
欣慰熊猫发布了新的文献求助10
2分钟前
3分钟前
123完成签到 ,获得积分10
3分钟前
kazuko发布了新的文献求助10
3分钟前
晚棠发布了新的文献求助10
3分钟前
orixero应助kazuko采纳,获得10
3分钟前
晚棠完成签到 ,获得积分10
4分钟前
success2024完成签到,获得积分10
4分钟前
4分钟前
4分钟前
华仔应助GYQ采纳,获得10
4分钟前
56苏发布了新的文献求助10
4分钟前
4分钟前
GYQ发布了新的文献求助10
4分钟前
5分钟前
科研通AI2S应助zyx采纳,获得10
5分钟前
GYQ完成签到,获得积分20
5分钟前
5分钟前
NexusExplorer应助reeedirect采纳,获得10
6分钟前
6分钟前
zyx发布了新的文献求助10
6分钟前
木头完成签到,获得积分10
6分钟前
高分求助中
The Oxford Encyclopedia of the History of Modern Psychology 1500
Parametric Random Vibration 600
城市流域产汇流机理及其驱动要素研究—以北京市为例 500
Plasmonics 500
Drug distribution in mammals 500
Building Quantum Computers 458
Happiness in the Nordic World 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3857299
求助须知:如何正确求助?哪些是违规求助? 3399721
关于积分的说明 10613312
捐赠科研通 3121961
什么是DOI,文献DOI怎么找? 1721139
邀请新用户注册赠送积分活动 828904
科研通“疑难数据库(出版商)”最低求助积分说明 777924