生物膜
铜绿假单胞菌
沙门氏菌
微生物学
大肠杆菌
污染
食物腐败
胞外聚合物
食品科学
化学
细菌
生物
生物化学
基因
生态学
遗传学
作者
Shamsun Nahar Begum,Angela Jie‐won Ha,Kye-Hwan Byun,Md. Iqbal Hossain,Md. Furkanur Rahaman Mizan,Sang‐Do Ha
标识
DOI:10.1016/j.ijfoodmicro.2020.108897
摘要
Food contamination is a major public health concern, with Salmonella Typhimurium, Escherichia coli, and Pseudomonas aeruginosa being the prominent causal agents. They often produce resistant shields in food through biofilm formation and are difficult to remove from food-contact surfaces using conventional cleaning agents. In the current study, we investigated the efficacy of flavourzyme, an industrial peptidase, in biofilm removal from ultra-high molecular weight polyethylene (UHMWPE) and rubber surfaces and compared the corresponding efficacies with those of the commonly used DNase I. We noticed a significant reduction of young (24-h-old) and mature (72-h-old) biofilms on both surfaces after treatment with flavourzyme. The overall reduction potentiality of flavourzyme was higher than that of DNase I. The flavourzyme-mediated removal of biofilms appears to be caused by the gradual disruption of amide (NH) and polysaccharide (C-O-C) stretching bands of the extracellular polymeric substances (EPS) released by the microbes. EPS elimination and the cell-friendly behavior of flavourzyme were further confirmed by field emission scanning electron microscopy. Based on these findings, we suggest that flavourzyme can reduce microbial EPS formation, thus possibly controlling microbial food contamination. This finding reveals a new opportunity for the development of a novel method for controlling foodborne illness as well as food spoilage.
科研通智能强力驱动
Strongly Powered by AbleSci AI