多硫化物
材料科学
介孔材料
阴极
硫黄
化学工程
电化学
极化(电化学)
催化作用
沸石咪唑盐骨架
吸附
阳极
非阻塞I/O
纳米颗粒
纳米技术
电极
化学
有机化学
电解质
金属有机骨架
物理化学
工程类
冶金
作者
Pingdi Xu,Handing Liu,Qingwen Zeng,Li Xiao,Qing Li,Ke Pei,Yahui Zhang,Xue‐Feng Yu,Jie Zhang,Qian Xiang,Renchao Che
出处
期刊:Small
[Wiley]
日期:2020-12-22
卷期号:17 (3)
被引量:57
标识
DOI:10.1002/smll.202005227
摘要
Abstract Achieving strong adsorption and catalytic ability toward polar lithium polysulfide species (LiPSs) of the sulfur host in lithium–sulfur (Li–S) batteries is essential for their electrochemical cyclic stability. Herein, a strategy of “self‐termination of ion exchange” is put forward to synthesize the novel yolk‐shell sulfur host composed of ZnO nanoparticles confined in Co‐doped NiO (CDN) polyhedron (ZCCDN). After sulfur infiltration, the obtained S/ZCCDN cathode achieves excellent performance of 738.56 mAh g −1 after 500 cycles at 0.5 C with a very low capacity decay rate of only 0.048% per cycle. Even at 1 C, 501.05 mAh g −1 could be retained after 500 cycles, suggesting a capacity decay ratio of only 0.076% per cycle. The good cycle performance is attributed to the improved LiPSs’ conversion kinetics, which originates from ZCCDN's sturdy chemical affinity and strong catalytic ability to polar LiPSs. For the first time, by electron holography, the local interfacial polarization electric field is clarified to be existed in the material which is conducive to the capture of LiPSs and the migration of electrons and Li + from the mesopores. This work provides a rational way for the use of zeolitic imidazolate frameworks (ZIFs) and development of cathode materials for Li–S batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI