A Novel Model-Based Defogging Method for Particle Images With Different Fog Distributions

计算机视觉 人工智能 计算机科学 粒子(生态学) 物理 算法 地质学 海洋学
作者
Shuyi Zhou,Xiaoyan Liu,Jiaxu Duan,Fabian Herz
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-19 被引量:6
标识
DOI:10.1109/tim.2022.3164154
摘要

Defogging of particle images is a common task in machine vision-based measurement of particle size distribution (PSD) for granular materials or products. Current defogging methods are challenged by particle images captured in industrial environment, where artificial light is dominant in the imaging process and the fog is often unevenly distributed in the image due to its rapid and random movement. The recovered images may contain serious overexposures and result in failures in PSD measurement. To solve this problem, we propose a novel model-based defogging method for particle images with different fog distributions. First, a physical model is established to describe the image formation in industrial foggy environment with artificial light. Then, an adaptive method is proposed to estimate the range of the key model parameter (light intensity coefficient) and to obtain candidate defogged images. Finally, the fog-free image is generated by fusing the candidate images to reduce overexposures while retaining the image brightness. The proposed method was validated experimentally using iron ore particle images and compared with ten current defogging methods. Results demonstrate that our proposed method is adaptive to different illuminations and different fog contributions. It outperforms other defogging methods in removing unevenly distributed fog from the image and thus greatly improves the measuring accuracy of particle size. The proposed image defogging method can be integrated into machine vision systems for particle-handling processes to facilitate PSD measurement in foggy environment. The sample implementation of the proposed method is available at " https://github.com/zhoushuyi/particle-image-defog ."
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Coarrb完成签到,获得积分10
1秒前
申左一发布了新的文献求助10
1秒前
NexusExplorer应助科研小白采纳,获得10
2秒前
3秒前
4秒前
4秒前
哈哈发布了新的文献求助10
5秒前
longchang完成签到 ,获得积分10
5秒前
香蕉觅云应助香蕉招牌采纳,获得10
5秒前
儒雅路人完成签到,获得积分10
6秒前
7秒前
史小霜发布了新的文献求助10
8秒前
梨子酱发布了新的文献求助10
8秒前
猪猪侠发布了新的文献求助10
8秒前
Molly完成签到,获得积分10
11秒前
13秒前
Dave完成签到,获得积分10
13秒前
15秒前
FEATORE完成签到,获得积分10
15秒前
Lialia完成签到 ,获得积分10
15秒前
zsj发布了新的文献求助10
15秒前
暴躁的夏蓉完成签到,获得积分10
17秒前
赘婿应助申左一采纳,获得10
17秒前
梨子酱发布了新的文献求助10
17秒前
Abi完成签到,获得积分10
17秒前
MUMU发布了新的文献求助10
17秒前
xinxin完成签到,获得积分10
17秒前
简约完成签到,获得积分20
18秒前
CodeCraft应助Lebranium采纳,获得10
20秒前
李健的小迷弟应助Dave采纳,获得10
21秒前
卡卡西发布了新的文献求助30
22秒前
22秒前
25秒前
2424完成签到,获得积分10
25秒前
26秒前
小蘑菇应助小凯同学采纳,获得10
27秒前
不赖床的科研狗完成签到,获得积分10
27秒前
cream发布了新的文献求助10
27秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
中国兽药产业发展报告 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Pediatric Injectable Drugs 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4450036
求助须知:如何正确求助?哪些是违规求助? 3918173
关于积分的说明 12161524
捐赠科研通 3567912
什么是DOI,文献DOI怎么找? 1959282
邀请新用户注册赠送积分活动 998583
科研通“疑难数据库(出版商)”最低求助积分说明 893774