A prediction model for xerostomia in locoregionally advanced nasopharyngeal carcinoma patients receiving radical radiotherapy

医学 鼻咽癌 放射治疗 内科学 口腔颌面外科 耳鼻咽喉科 普通外科 肿瘤科 放射科 外科
作者
Min-Ying Li,Jingjing Zhang,Yawen Zha,Yani Li,Bingshuang Hu,Siming Zheng,Jiaxiong Zhou
出处
期刊:BMC Oral Health [Springer Nature]
卷期号:22 (1) 被引量:10
标识
DOI:10.1186/s12903-022-02269-0
摘要

Abstract Background This study was to evaluate the predictors of xerostomia and Grade 3 xerostomia in locoregionally advanced nasopharyngeal carcinoma (NPC) patients receiving radical radiotherapy and establish prediction models for xerostomia and Grade 3 xerostomia based on the predictors. Methods Totally, 365 patients with locoregionally advanced NPC who underwent radical radiotherapy were randomly divided into the training set (n = 255) and the testing set (n = 110) at a ratio of 7:3. All variables were included in the least absolute shrinkage and selection operator regression to screen out the potential predictors for xerostomia as well as the Grade 3 xerostomia in locoregionally advanced NPC patients receiving radical radiotherapy. The random forest (RF), a decision tree classifier (DTC), and extreme-gradient boosting (XGB) models were constructed. The sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), area under the curve (AUC) and accuracy were analyzed to evaluate the predictive performance of the models. Results In the RF model for predicting xerostomia, the sensitivity was 1.000 (95%CI 1.000–1.000), the PPV was 0.990 (95%CI 0.975–1.000), the NPV was 1.000 (95%CI 1.000–1.000), the AUC was 0.999 (95%CI 0.997–1.000) and the accuracy was 0.992 (95%CI 0.981–1.000) in the training set. The sensitivity was 0.933 (95%CI 0.880–0.985), the PPV was 0.933 (95%CI 0.880–0.985), and the AUC was 0.915 (95%CI 0.860–0.970) in the testing set. Hypertension, age, total radiotherapy dose, dose at 50% of the left parotid volume, mean dose to right parotid gland, mean dose to oral cavity, and course of induction chemotherapy were important variables associated with the risk of xerostomia in locoregionally advanced NPC patients receiving radical radiotherapy. The AUC of DTC model for predicting xerostomia was 0.769 (95%CI 0.666–0.872) in the testing set. The AUC of the XGB model for predicting xerostomia was 0.834 (0.753–0.916) in the testing set. The RF model showed the good predictive ability with the AUC of 0.986 (95%CI 0.972–1.000) in the training set, and 0.766 (95%CI 0.626–0.905) in the testing set for identifying patients who at high risk of Grade 3 xerostomia in those with high risk of xerostomia. Conclusions An RF model for predicting xerostomia in locoregionally advanced NPC patients receiving radical radiotherapy and an RF model for predicting Grade 3 xerostomia in those with high risk of xerostomia showed good predictive ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哒哒完成签到,获得积分10
1秒前
jstagey完成签到 ,获得积分10
1秒前
Sylvia41完成签到,获得积分10
2秒前
生动的保温杯完成签到,获得积分10
3秒前
zhangfuchao完成签到,获得积分10
3秒前
3秒前
在水一方应助小线团黑桃采纳,获得10
3秒前
4秒前
醉眠完成签到 ,获得积分10
4秒前
6秒前
lglsp发布了新的文献求助10
6秒前
脑洞疼应助xuanjiawu采纳,获得10
6秒前
7秒前
晫猗完成签到,获得积分10
7秒前
7秒前
meng完成签到,获得积分10
8秒前
zzznznnn发布了新的文献求助10
9秒前
伶俐怀亦发布了新的文献求助10
11秒前
11秒前
124完成签到 ,获得积分10
11秒前
12秒前
不爱吃鱼完成签到 ,获得积分10
13秒前
YAYA发布了新的文献求助10
14秒前
充电宝应助wenbo采纳,获得10
15秒前
万能图书馆应助孙傲采纳,获得10
15秒前
瓜瓜发布了新的文献求助10
16秒前
五原日落完成签到 ,获得积分10
16秒前
量子星尘发布了新的文献求助10
16秒前
小翼应助lxj采纳,获得10
17秒前
19秒前
小马发布了新的文献求助30
19秒前
MQueen完成签到,获得积分10
19秒前
Riggle G完成签到,获得积分0
20秒前
jim完成签到 ,获得积分10
20秒前
宇森完成签到,获得积分10
20秒前
Homura完成签到,获得积分10
20秒前
任全强完成签到,获得积分10
23秒前
西柚完成签到,获得积分10
24秒前
25秒前
包凡之完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604106
求助须知:如何正确求助?哪些是违规求助? 4688956
关于积分的说明 14857141
捐赠科研通 4696700
什么是DOI,文献DOI怎么找? 2541175
邀请新用户注册赠送积分活动 1507328
关于科研通互助平台的介绍 1471851