逻辑回归
医学
急性肾损伤
阶段(地层学)
接收机工作特性
肾脏疾病
重症监护医学
重症监护室
内科学
急诊医学
机器学习
计算机科学
古生物学
生物
作者
Canzheng Wei,Lifan Zhang,Yunxia Feng,Aijia Ma,Yan Kang
标识
DOI:10.1186/s12911-021-01740-2
摘要
Abstract Background Acute kidney injury (AKI) is a serve and harmful syndrome in the intensive care unit. Comparing to the patients with AKI stage 1/2, the patients with AKI stage 3 have higher in-hospital mortality and risk of progression to chronic kidney disease. The purpose of this study is to develop a prediction model that predict whether patients with AKI stage 1/2 will progress to AKI stage 3. Methods Patients with AKI stage 1/2, when they were first diagnosed with AKI in the Medical Information Mart for Intensive Care, were included. We used the Logistic regression and machine learning extreme gradient boosting (XGBoost) to build two models which can predict patients who will progress to AKI stage 3. Established models were evaluated by cross-validation, receiver operating characteristic curve, and precision–recall curves. Results We included 25,711 patients, of whom 2130 (8.3%) progressed to AKI stage 3. Creatinine, multiple organ failure syndromes were the most important in AKI progression prediction. The XGBoost model has a better performance than the Logistic regression model on predicting AKI stage 3 progression. Thus, we build a software based on our data which can predict AKI progression in real time. Conclusions The XGboost model can better identify patients with AKI progression than Logistic regression model. Machine learning techniques may improve predictive modeling in medical research.
科研通智能强力驱动
Strongly Powered by AbleSci AI