亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning model for predicting acute kidney injury progression in critically ill patients

逻辑回归 医学 急性肾损伤 阶段(地层学) 接收机工作特性 肾脏疾病 重症监护医学 重症监护室 内科学 急诊医学 机器学习 计算机科学 古生物学 生物
作者
Canzheng Wei,Lifan Zhang,Yunxia Feng,Aijia Ma,Yan Kang
出处
期刊:BMC Medical Informatics and Decision Making [Springer Nature]
卷期号:22 (1) 被引量:29
标识
DOI:10.1186/s12911-021-01740-2
摘要

Abstract Background Acute kidney injury (AKI) is a serve and harmful syndrome in the intensive care unit. Comparing to the patients with AKI stage 1/2, the patients with AKI stage 3 have higher in-hospital mortality and risk of progression to chronic kidney disease. The purpose of this study is to develop a prediction model that predict whether patients with AKI stage 1/2 will progress to AKI stage 3. Methods Patients with AKI stage 1/2, when they were first diagnosed with AKI in the Medical Information Mart for Intensive Care, were included. We used the Logistic regression and machine learning extreme gradient boosting (XGBoost) to build two models which can predict patients who will progress to AKI stage 3. Established models were evaluated by cross-validation, receiver operating characteristic curve, and precision–recall curves. Results We included 25,711 patients, of whom 2130 (8.3%) progressed to AKI stage 3. Creatinine, multiple organ failure syndromes were the most important in AKI progression prediction. The XGBoost model has a better performance than the Logistic regression model on predicting AKI stage 3 progression. Thus, we build a software based on our data which can predict AKI progression in real time. Conclusions The XGboost model can better identify patients with AKI progression than Logistic regression model. Machine learning techniques may improve predictive modeling in medical research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一颗一颗的咖啡豆完成签到,获得积分10
2秒前
4秒前
Chris完成签到 ,获得积分10
10秒前
汉光武发布了新的文献求助30
10秒前
12秒前
13秒前
yin景景完成签到,获得积分10
13秒前
上官若男应助Angora采纳,获得50
14秒前
14秒前
大模型应助还行采纳,获得10
16秒前
林下落月光完成签到,获得积分10
17秒前
慕青应助zmftl采纳,获得10
18秒前
欧皇完成签到,获得积分20
19秒前
20秒前
FUJIAN关注了科研通微信公众号
23秒前
还行完成签到,获得积分10
25秒前
2568269431完成签到 ,获得积分10
26秒前
黄HYK完成签到 ,获得积分10
33秒前
香蕉觅云应助kyle竣采纳,获得10
34秒前
月关完成签到 ,获得积分10
34秒前
地理牛马完成签到 ,获得积分10
36秒前
心静听炊烟完成签到 ,获得积分10
38秒前
kyle竣完成签到,获得积分10
42秒前
oleskarabach发布了新的文献求助10
44秒前
江枫渔火完成签到 ,获得积分10
45秒前
45秒前
orixero应助南淮采纳,获得10
49秒前
49秒前
53秒前
vt发布了新的文献求助10
54秒前
57秒前
SUNny完成签到 ,获得积分10
59秒前
cfghjj发布了新的文献求助10
59秒前
南淮发布了新的文献求助10
1分钟前
123完成签到 ,获得积分10
1分钟前
Went完成签到,获得积分10
1分钟前
1分钟前
Ava应助cfghjj采纳,获得10
1分钟前
1分钟前
vt完成签到,获得积分20
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 3000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5534135
求助须知:如何正确求助?哪些是违规求助? 4622242
关于积分的说明 14582092
捐赠科研通 4562357
什么是DOI,文献DOI怎么找? 2500139
邀请新用户注册赠送积分活动 1479703
关于科研通互助平台的介绍 1450787