Machine learning models are superior to noninvasive tests in identifying clinically significant stages of NAFLD and NAFLD‐related cirrhosis

医学 肝硬化 纤维化 内科学 胃肠病学 肝纤维化 肝活检 接收机工作特性 逻辑回归 活检
作者
Devon Chang,Emily Truong,Edward Mena,Fabiana Pacheco,Micaela Wong,Maha Guindi,Tsuyoshi Todo,Nabil Noureddin,Walid S. Ayoub,Ju Dong Yang,Irene Kim,Anita Kohli,Naim Alkhouri,Stephen A. Harrison,Mazen Noureddin
出处
期刊:Hepatology [Wiley]
卷期号:77 (2): 546-557 被引量:64
标识
DOI:10.1002/hep.32655
摘要

Background and Aims: We assessed the performance of machine learning (ML) models in identifying clinically significant NAFLD‐associated liver fibrosis and cirrhosis. Approach and Results: We implemented ML models including logistic regression (LR), random forest (RF), and artificial neural network to predict histological stages of fibrosis using 17 demographic/clinical features in 1370 patients with NAFLD who underwent liver biopsy, FibroScan, and labs within a 6‐month period at multiple U.S. centers. Histological stages of fibrosis (≥F2, ≥F3, and F4) were predicted using ML, FibroScan liver stiffness measurements, and Fibrosis‐4 index (FIB‐4). NASH with significant fibrosis (NAS ≥ 4 + ≥F2) was assessed using ML, FibroScan‐AST (FAST) score, FIB‐4, and NAFLD fibrosis score (NFS). We used 80% of the cohort to train and 20% to test the ML models. For ≥F2, ≥F3, F4, and NASH + NAS ≥ 4 + ≥F2, all ML models, especially RF, had primarily higher accuracy and AUC compared with FibroScan, FIB‐4, FAST, and NFS. AUC for RF versus FibroScan and FIB‐4 for ≥F2, ≥F3, and F4 were (0.86 vs. 0.81, 0.78), (0.89 vs. 0.83, 0.82), and (0.89 vs. 0.86, 0.85), respectively. AUC for RF versus FAST, FIB‐4, and NFS for NASH + NAS ≥ 4 + ≥F2 were (0.80 vs. 0.77, 0.66, 0.63). For NASH + NAS ≥ 4 + ≥F2, all ML models had lower/similar percentages within the indeterminate zone compared with FIB‐4 and NFS. Overall, ML models performed better in sensitivity, specificity, positive predictive value, and negative predictive value compared with traditional noninvasive tests. Conclusions: ML models performed better overall than FibroScan, FIB‐4, FAST, and NFS. ML could be an effective tool for identifying clinically significant liver fibrosis and cirrhosis in patients with NAFLD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助科研通管家采纳,获得10
刚刚
香蕉觅云应助科研通管家采纳,获得10
刚刚
小明应助科研通管家采纳,获得10
刚刚
斯文败类应助科研通管家采纳,获得30
刚刚
浮游应助科研通管家采纳,获得10
刚刚
共享精神应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
Akim应助科研通管家采纳,获得10
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
天天快乐应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
汉堡包应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
cdercder应助古炮采纳,获得30
1秒前
研友_VZG7GZ应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
无花果应助俄克赛普特采纳,获得10
2秒前
微光熠发布了新的文献求助10
2秒前
Keats发布了新的文献求助10
2秒前
柯善若完成签到,获得积分10
2秒前
Orange应助等等采纳,获得10
4秒前
怕黑白亦发布了新的文献求助30
5秒前
jack_kunn发布了新的文献求助200
6秒前
6秒前
7秒前
无极微光应助自然剑采纳,获得20
7秒前
霖lin完成签到 ,获得积分10
7秒前
8秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
星辰大海应助漂亮夏兰采纳,获得10
9秒前
kkk完成签到,获得积分10
10秒前
li发布了新的文献求助10
10秒前
10秒前
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5475655
求助须知:如何正确求助?哪些是违规求助? 4577327
关于积分的说明 14361496
捐赠科研通 4505243
什么是DOI,文献DOI怎么找? 2468525
邀请新用户注册赠送积分活动 1456156
关于科研通互助平台的介绍 1429890