A web server for identifying circRNA-RBP variable-length binding sites based on stacked generalization ensemble deep learning network

一般化 计算机科学 人工智能 集成学习 深度学习 结合位点 序列(生物学) Web服务器 序列母题 计算生物学 机器学习 理论计算机科学 生物 数学 互联网 遗传学 万维网 数学分析 DNA
作者
Zhengfeng Wang,Xiujuan Lei
出处
期刊:Methods [Elsevier BV]
卷期号:205: 179-190 被引量:7
标识
DOI:10.1016/j.ymeth.2022.06.014
摘要

Circular RNA (circRNA) can exert biological functions by interacting with RNA-binding protein (RBP), and some deep learning-based methods have been developed to predict RBP binding sites on circRNA. However, most of these methods identify circRNA-RBP binding sites are only based on single data resource and cannot provide exact binding sites, only providing the probability value of a sequence fragment. To solve these problems, we propose a binding sites localization algorithm that fuses binding sites from multiple databases, and further design a stacked generalization ensemble deep learning model named CirRBP to identify RBP binding sites on circRNA. The CirRBP is trained by combining the binding sites from multiple databases and makes predictions by weighted aggregating the predictions of each sub-model. The results show that the CirRBP outperforms any sub-model and existing online prediction model. For better access to our research results, we develop an open-source web application called CRWS (CircRNA-RBP Web Server). Its back-end learning model of the CRWS is a stacked generalization ensemble learning model CirRBP based on different deep learning frameworks. Given a full-length circRNA or fragment sequence and a target RBP, the CRWS can analyze and provide the exact potential binding sites of the target RBP on the given sequence through the binding sites localization algorithm, and visualize it. In addition, the CRWS can discover the most widely distributed motif in each RBP dataset. Up to now, CRWS is the first significant online tool that uses multi-source data to train models and predict exact binding sites. CRWS is now publicly and freely available without login requirement at: http://www.bioinformatics.team.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助红叶采纳,获得10
1秒前
1秒前
1秒前
1秒前
2秒前
孟孟发布了新的文献求助10
2秒前
zzz完成签到,获得积分10
2秒前
金鑫水淼完成签到 ,获得积分10
2秒前
缓慢千易完成签到,获得积分10
2秒前
志不在科研完成签到,获得积分0
3秒前
充电宝应助H丶化羽采纳,获得10
3秒前
3秒前
研友_IEEE快到碗里来完成签到,获得积分10
3秒前
cortex发布了新的文献求助10
3秒前
个性的依风完成签到,获得积分10
4秒前
付绒发布了新的文献求助10
5秒前
5秒前
5秒前
冷酷的可乐完成签到,获得积分10
5秒前
6秒前
七怪完成签到,获得积分20
6秒前
SciGPT应助kxdr采纳,获得10
7秒前
善学以致用应助琉璃岁月采纳,获得10
7秒前
徐凤翎完成签到,获得积分10
7秒前
灵巧映安发布了新的文献求助10
8秒前
8秒前
郭菱香完成签到 ,获得积分10
8秒前
8秒前
9秒前
doudou完成签到,获得积分10
9秒前
yan发布了新的文献求助10
9秒前
9秒前
CLN完成签到,获得积分10
9秒前
璐璐完成签到 ,获得积分10
10秒前
脑洞疼应助Voloid采纳,获得10
11秒前
冷艳的迎彤完成签到,获得积分10
11秒前
11秒前
英俊的铭应助WJM采纳,获得10
11秒前
无限猕猴桃应助冰冰橙采纳,获得20
11秒前
12秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3804626
求助须知:如何正确求助?哪些是违规求助? 3349484
关于积分的说明 10344593
捐赠科研通 3065523
什么是DOI,文献DOI怎么找? 1683126
邀请新用户注册赠送积分活动 808719
科研通“疑难数据库(出版商)”最低求助积分说明 764695