累积量
布朗运动
高斯分布
物理
扩散
统计物理学
均方位移
平面的
流离失所(心理学)
指数函数
反常扩散
分布(数学)
经典力学
数学分析
数学
量子力学
统计
计算机图形学(图像)
分子动力学
知识管理
计算机科学
心理学
心理治疗师
创新扩散
作者
Arthur Alexandre,Maxime Lavaud,Nicolas Farès,Elodie Millan,Yann Louyer,Thomas Salez,Yacine Amarouchène,Thomas Guérin,David S. Dean
标识
DOI:10.1103/physrevlett.130.077101
摘要
We study the diffusion of particles confined close to a single wall and in double-wall planar channel geometries where the local diffusivities depend on the distance to the boundaries. Displacement parallel to the walls is Brownian as characterized by its variance, but it is non-Gaussian having a nonzero fourth cumulant. Establishing a link with Taylor dispersion, we calculate the fourth cumulant and the tails of the displacement distribution for general diffusivity tensors along with potentials generated by either the walls or externally, for instance, gravity. Experimental and numerical studies of the motion of a colloid in the direction parallel to the wall give measured fourth cumulants which are correctly predicted by our theory. Interestingly, contrary to models of Brownian-yet-non-Gaussian diffusion, the tails of the displacement distribution are shown to be Gaussian rather than exponential. All together, our results provide additional tests and constraints for the inference of force maps and local transport properties near surfaces.
科研通智能强力驱动
Strongly Powered by AbleSci AI