Prediction of lung malignancy progression and survival with machine learning based on pre-treatment FDG-PET/CT

医学 恶性肿瘤 接收机工作特性 卷积神经网络 放射科 曲线下面积 人工智能 核医学 内科学 计算机科学
作者
Brian Huang,John Sollee,Yongheng Luo,Ashwin Reddy,Zhusi Zhong,Jing Wu,Joseph G. Mammarappallil,Terrance T. Healey,Gang Cheng,Christopher G. Azzoli,Dana Korogodsky,Paul J. Zhang,Xue Feng,Jie Li,Yang Li,Zhicheng Jiao,Harrison X. Bai
出处
期刊:EBioMedicine [Elsevier BV]
卷期号:82: 104127-104127 被引量:60
标识
DOI:10.1016/j.ebiom.2022.104127
摘要

Pre-treatment FDG-PET/CT scans were analyzed with machine learning to predict progression of lung malignancies and overall survival (OS). A retrospective review across three institutions identified patients with a pre-procedure FDG-PET/CT and an associated malignancy diagnosis. Lesions were manually and automatically segmented, and convolutional neural networks (CNNs) were trained using FDG-PET/CT inputs to predict malignancy progression. Performance was evaluated using area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, and specificity. Image features were extracted from CNNs and by radiomics feature extraction, and random survival forests (RSF) were constructed to predict OS. Concordance index (C-index) and integrated brier score (IBS) were used to evaluate OS prediction. 1168 nodules (n=965 patients) were identified. 792 nodules had progression and 376 were progression-free. The most common malignancies were adenocarcinoma (n=740) and squamous cell carcinoma (n=179). For progression risk, the PET+CT ensemble model with manual segmentation (accuracy=0.790, AUC=0.876) performed similarly to the CT only (accuracy=0.723, AUC=0.888) and better compared to the PET only (accuracy=0.664, AUC=0.669) models. For OS prediction with deep learning features, the PET+CT+clinical RSF ensemble model (C-index=0.737) performed similarly to the CT only (C-index=0.730) and better than the PET only (C-index=0.595), and clinical only (C-index=0.595) models. RSF models constructed with radiomics features had comparable performance to those with CNN features. CNNs trained using pre-treatment FDG-PET/CT and extracted performed well in predicting lung malignancy progression and OS. OS prediction performance with CNN features was comparable to a radiomics approach. The prognostic models could inform treatment options and improve patient care. NIH NHLBI training grant (5T35HL094308-12, John Sollee).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
昏睡的蟠桃应助snailanli采纳,获得30
2秒前
NexusExplorer应助Umar采纳,获得10
3秒前
小二郎应助愉快的碧灵采纳,获得10
4秒前
DDDiamond发布了新的文献求助200
5秒前
5秒前
666发布了新的文献求助10
6秒前
9秒前
9秒前
11秒前
开心的万天完成签到,获得积分10
12秒前
12秒前
wow发布了新的文献求助10
14秒前
Linica发布了新的文献求助10
16秒前
wang@163.com发布了新的文献求助10
18秒前
FashionBoy应助忐忑的晓绿采纳,获得10
19秒前
达达完成签到,获得积分10
20秒前
樱悼柳雪完成签到,获得积分0
20秒前
Galaxy8完成签到,获得积分10
25秒前
cc发布了新的文献求助10
26秒前
xlb发布了新的文献求助10
37秒前
spring完成签到 ,获得积分10
37秒前
105完成签到,获得积分10
38秒前
46秒前
wanci应助於奎采纳,获得50
47秒前
赘婿应助HJY采纳,获得10
49秒前
50秒前
羽墨空空发布了新的文献求助10
51秒前
丛玉林完成签到,获得积分10
52秒前
54秒前
上官若男应助iorpi采纳,获得10
54秒前
56秒前
GG完成签到,获得积分10
56秒前
NexusExplorer应助昵称采纳,获得10
56秒前
57秒前
wary发布了新的文献求助10
57秒前
苹果亦云发布了新的文献求助10
58秒前
舒心魂幽发布了新的文献求助20
58秒前
1分钟前
1分钟前
於奎发布了新的文献求助50
1分钟前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3824368
求助须知:如何正确求助?哪些是违规求助? 3366662
关于积分的说明 10441995
捐赠科研通 3085959
什么是DOI,文献DOI怎么找? 1697631
邀请新用户注册赠送积分活动 816447
科研通“疑难数据库(出版商)”最低求助积分说明 769640