Enviromic prediction is useful to define the limits of climate adaptation: A case study of common bean in Brazil

种质资源 适应(眼睛) 气候变化 环境科学 生长季节 环境资源管理 比例(比率) 作物 温带气候 农业工程 地理 生物 生态学 农学 地图学 神经科学 工程类
作者
Alexandre Bryan Heinemann,Germano Costa‐Neto,Roberto Fritsche‐Neto,David Henriques da Matta,Igor Kuivjogi Fernandes
出处
期刊:Field Crops Research [Elsevier BV]
卷期号:286: 108628-108628 被引量:16
标识
DOI:10.1016/j.fcr.2022.108628
摘要

Ongoing changes in the global environmental conditions foster plant breeding research to develop climate-smart cultivars as fast as possible. Data analytics are essential for achieving this goal, especially the so-called science of enviromics (large-scale environmental characterization of crop growing conditions) that could be used to pinpoint the relevant environment impacts driving the adaptation of a certain specie in a breeding framework. Here we quantified the effects of diverse climate factors on the current adaptation of elite common bean germplasm in Brazil. To capture the non-linearity of those impacts across a wide range of environments, we developed an “enviromic prediction” approach by combining Generalized Additive Models (GAM), environmental covariates (EC), and grain yield (GY) from 18 years of historical breeding trials. Then, we predicted the optimum limits for ECs at each production scenario (four regions, three seasons, and two grain types) and its respective predictions of GY adaptation. Our results indicate that the nonlinear influence of air temperature, solar radiation, and rainfall led to a huge interaction of the impacts among the development stages, seasons, and regions. This revealed that seasonality differently affected the vegetative and reproductive stages, which its impact drastically vary according to the region and season, which makes unfeasible the development of a breeding strategy for selecting for broad adaptation. Conversely, with our approach it was possible to pinpoint the effects of the region- or season-specific impacts, which helped identify the “climate limits” and critical development phases for each possible production scenario. This could allow breeders to design crop ideotypes while directing efforts to develop climate-smart varieties. Furthermore, enviromics prediction is a cost-effective way to use EC as a data analytics tool to support the visualization of regional breeding gaps for specific growing conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
rtpa完成签到,获得积分10
1秒前
2秒前
齐天大圣完成签到,获得积分10
3秒前
YANG发布了新的文献求助10
4秒前
大宝S欧D蜜完成签到,获得积分10
4秒前
5秒前
复杂黑夜发布了新的文献求助10
5秒前
6秒前
小马甲应助越宝采纳,获得10
6秒前
小王小王发布了新的文献求助10
7秒前
可莉完成签到 ,获得积分10
7秒前
橘柚完成签到 ,获得积分10
7秒前
7秒前
NexusExplorer应助被窝采纳,获得10
8秒前
小二郎应助曾经的鸡翅采纳,获得10
8秒前
10秒前
云泽发布了新的文献求助10
11秒前
冷艳紫南发布了新的文献求助10
11秒前
12秒前
13秒前
14秒前
HXX完成签到,获得积分20
14秒前
Orange应助卡拉蹦蹦采纳,获得10
15秒前
科研通AI5应助摔摔77呀采纳,获得10
15秒前
啊啊啊发布了新的文献求助10
16秒前
17秒前
18秒前
abcd_1067完成签到,获得积分10
18秒前
鱼罐罐罐头完成签到,获得积分10
18秒前
钮续完成签到,获得积分10
19秒前
19秒前
19秒前
不要芫荽完成签到,获得积分10
20秒前
可爱完成签到 ,获得积分10
20秒前
22秒前
冷艳紫南完成签到,获得积分10
22秒前
hxy123完成签到,获得积分10
22秒前
dxurp发布了新的文献求助30
23秒前
英俊的铭应助钮续采纳,获得10
23秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814775
求助须知:如何正确求助?哪些是违规求助? 3358942
关于积分的说明 10398332
捐赠科研通 3076344
什么是DOI,文献DOI怎么找? 1689769
邀请新用户注册赠送积分活动 813254
科研通“疑难数据库(出版商)”最低求助积分说明 767599