Deep Learning–Based Automation of Scan-to-BIM with Modeling Objects from Occluded Point Clouds

点云 建筑信息建模 最小边界框 计算机科学 自动化 跳跃式监视 过程(计算) 分割 点(几何) 参数统计 人工智能 对象(语法) 深度学习 计算机视觉 工程类 图像(数学) 操作系统 统计 机械工程 化学工程 数学 相容性(地球化学) 几何学
作者
Jun‐Woo Park,Jaehong Kim,Dong-Yeop Lee,Kwangbok Jeong,Jaewook Lee,Hakpyeong Kim,Taehoon Hong
出处
期刊:Journal of Management in Engineering [American Society of Civil Engineers]
卷期号:38 (4) 被引量:26
标识
DOI:10.1061/(asce)me.1943-5479.0001055
摘要

As-built building information modeling (BIM) currently is regarded as a tool with the potential to manage buildings efficiently in the operation and maintenance phases. However, as-built BIM modeling is a labor-intensive process that requires considerable cost and time in modeling existing buildings. Although active research on scan-to-BIM automation has addressed this issue, previous studies modeled only major objects such as walls, floors, and ceilings, consequently requiring modeling other objects in indoor spaces. In addition, there was a limitation in modeling objects located in the occluded areas of scanned point clouds. Therefore, this study extracted various indoor objects from a point cloud based on deep-learning, and compensated for incomplete object information from occluded point clouds for automating the process of scan-to-BIM. The number of object classes extracted from the semantic segmentation of a deep learning network was increased to 13, and spatial relationships between objects were defined to improve the accuracy of bounding boxes extracted from point clouds. Furthermore, a parametric algorithm was developed to match the bounding boxes and objects in a BIM library to generate BIM models automatically. In a case study involving an office room, the accuracy of the bounding boxes of some object classes improved by as much as 53.33%. The study verified the feasibility of the proposed method of scan-to-BIM automation for the three-dimensional (3D) reality capture of existing buildings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
希望天下0贩的0应助cyy采纳,获得10
1秒前
1秒前
1秒前
史超发布了新的文献求助10
2秒前
2秒前
2秒前
困敦发布了新的文献求助10
2秒前
XM发布了新的文献求助10
2秒前
andy发布了新的文献求助10
2秒前
yuri发布了新的文献求助10
2秒前
2秒前
科目三应助ZhangXR采纳,获得10
2秒前
doudou完成签到,获得积分10
3秒前
3秒前
勺儿发布了新的文献求助10
3秒前
3秒前
Orange应助ploto采纳,获得10
4秒前
虚心醉蝶完成签到 ,获得积分10
4秒前
4秒前
5秒前
5秒前
5秒前
徐裘完成签到,获得积分10
5秒前
5秒前
RUSH发布了新的文献求助10
5秒前
zkqzzz完成签到,获得积分10
5秒前
6秒前
6秒前
乎乎发布了新的文献求助10
6秒前
JamesPei应助牛人采纳,获得10
6秒前
小白发布了新的文献求助30
7秒前
昊阳完成签到,获得积分20
8秒前
Xsxbb_zxCG发布了新的文献求助10
9秒前
丘比特应助吴佳俊采纳,获得10
9秒前
Ava应助zwl采纳,获得10
10秒前
史超完成签到,获得积分10
10秒前
大模型应助突突突采纳,获得10
10秒前
懵懂的采梦应助虚幻沛菡采纳,获得10
11秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Oxford Handbook of Chinese Philosophy 200
Perovskite solar cells 200
Deciphering Earth's History: the Practice of Stratigraphy 200
New Syntheses with Carbon Monoxide 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834886
求助须知:如何正确求助?哪些是违规求助? 3377375
关于积分的说明 10497939
捐赠科研通 3096836
什么是DOI,文献DOI怎么找? 1705187
邀请新用户注册赠送积分活动 820509
科研通“疑难数据库(出版商)”最低求助积分说明 772107