Practical Approach to Asynchronous Multivariate Time Series Anomaly Detection and Localization

异常检测 杠杆(统计) 计算机科学 机器学习 自编码 水准点(测量) 特征学习 深度学习 数据挖掘 人工智能 时间序列 多元统计 代表(政治) 模式识别(心理学) 异步通信 计算机网络 大地测量学 政治 政治学 法学 地理
作者
Ahmed Abdulaal,Zhuang‐Hua Liu,Tomer Lancewicki
出处
期刊:Knowledge Discovery and Data Mining 卷期号:: 2485-2494 被引量:171
标识
DOI:10.1145/3447548.3467174
摘要

Engineers at eBay utilize robust methods in monitoring IT system signals for anomalies. However, the growing scale of signals, both in volumes and dimensions, overpowers traditional statistical state-space or supervised learning tools. Thus, state-of-the-art methods based on unsupervised deep learning are sought in recent research. However, we experienced flaws when implementing those methods, such as requiring partial supervision and weaknesses to high dimensional datasets, among other reasons discussed in this paper. We propose a practical approach for inferring anomalies from large multivariate sets. We observe an abundance of time series in real-world applications, which exhibit asynchronous and consistent repetitive variations, such as IT, weather, utility, and transportation. Our solution is designed to leverage this behavior. The solution utilizes spectral analysis on the latent representation of a pre-trained autoencoder to extract dominant frequencies across the signals, which are then used in a subsequent network that learns the phase shifts across the signals and produces a synchronized representation of the raw multivariate. Random subsets of the synchronous multivariate are then fed into an array of autoencoders learning to minimize the quantile reconstruction losses, which are then used to infer and localize anomalies based on a majority vote. We benchmark this method against state-of-the-art approaches on public datasets and eBay's data using their referenced evaluation methods. Furthermore, we address the limitations of the referenced evaluation methods and propose a more realistic evaluation method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lvbowen完成签到,获得积分10
刚刚
皮皮灰熊发布了新的文献求助10
1秒前
枫叶完成签到,获得积分10
2秒前
2秒前
2秒前
丘比特应助白辉采纳,获得10
3秒前
脑洞疼应助愤怒的小鸽子采纳,获得10
4秒前
harden9159完成签到,获得积分10
4秒前
xianbei完成签到,获得积分10
4秒前
领导范儿应助唯伊采纳,获得10
5秒前
深情安青应助开朗的亦竹采纳,获得10
7秒前
zzxpp完成签到 ,获得积分10
7秒前
123a应助憨憨采纳,获得10
7秒前
研友_VZG7GZ应助科研通管家采纳,获得10
7秒前
bkagyin应助科研通管家采纳,获得10
7秒前
无花果应助科研通管家采纳,获得10
7秒前
7秒前
Akim应助科研通管家采纳,获得10
7秒前
搜集达人应助科研通管家采纳,获得10
7秒前
星辰大海应助科研通管家采纳,获得10
7秒前
Provence应助科研通管家采纳,获得10
7秒前
寻道图强应助科研通管家采纳,获得30
7秒前
852应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
8秒前
上官若男应助科研通管家采纳,获得10
8秒前
英姑应助科研通管家采纳,获得10
8秒前
慕青应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
ccm应助科研通管家采纳,获得10
8秒前
科研通AI6应助雪雪啊采纳,获得10
8秒前
怡然的怜烟应助雪雪啊采纳,获得30
8秒前
科研通AI6应助雪雪啊采纳,获得30
8秒前
哈哈哈哈发布了新的文献求助10
8秒前
8秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
Hello应助喵喵采纳,获得10
11秒前
lin发布了新的文献求助10
11秒前
听枫发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
按地区划分的1,091个公共养老金档案列表 801
Work, Vacation and Well-being 500
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Rural Geographies People, Place and the Countryside 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5411519
求助须知:如何正确求助?哪些是违规求助? 4529087
关于积分的说明 14117607
捐赠科研通 4443688
什么是DOI,文献DOI怎么找? 2438365
邀请新用户注册赠送积分活动 1430538
关于科研通互助平台的介绍 1408214