Gaussian Mixture Model - Expectation Maximization Algorithm for Brain Images

雅卡索引 分割 期望最大化算法 人工智能 掷骰子 混合模型 模式识别(心理学) 计算机科学 图像分割 最大化 高斯分布 数学 统计 最大似然 物理 数学优化 量子力学
作者
Fatin Amelia Binti Kasim,Hang See Pheng,Syarifah Zyurina Nordin,Ong Kok Haur
标识
DOI:10.1109/aidas53897.2021.9574309
摘要

Segmentation of human brain can be performed with the aid of mathematical algorithm as well as computer-based system to assist radiologists and medical related profession to monitor the condition of one's brain comprehensively. Due to the complex structure of the human brain, one cannot simply analyze them just by looking at the MRI images. This research examines the brain segmentation and the validation of the segmentation using ground truth data for seven subjects. The segmentation of brain regions such as white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF) can be accomplished by using Gaussian Mixture Model (GMM) and Expectation-Maximization (EM) Algorithm. The results of segmentation are shown by the Gaussian distribution graph that indicates the volume of brain regions. The segmentation results are validated by the value of Dice index, Jaccard index, and positive predictive value (PPV). It is found that all seven subjects have high value for every index as the values ranging from more than 0.6 to almost approaching 1. For all subjects, the lowest percentage for Dice is 77.82% while the highest is 84.28%, the lowest percentage for Jaccard is 63.70% while the highest is 72.84%, and the lowest percentage for PPV is 94.44% while the highest is 98.75%. In conclusion, the index values for all subjects are acceptable and this means the segmentation by using GMM and EM Algorithm is accurate after going through the process of validation of segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
元谷雪发布了新的文献求助10
1秒前
2秒前
沉静的煎蛋完成签到,获得积分10
2秒前
3秒前
Aventen发布了新的文献求助30
3秒前
无极微光应助LJ徽采纳,获得20
4秒前
zhangzhaoxin完成签到,获得积分10
4秒前
syvshc应助imi采纳,获得10
4秒前
5秒前
科研通AI2S应助沉静的煎蛋采纳,获得10
5秒前
平常的擎宇完成签到,获得积分10
6秒前
6秒前
8秒前
寒冬发布了新的文献求助10
8秒前
kk_yang发布了新的文献求助10
9秒前
Crw__完成签到,获得积分20
10秒前
10秒前
11秒前
syvshc应助imi采纳,获得10
11秒前
DQY发布了新的文献求助10
11秒前
sw123完成签到 ,获得积分10
12秒前
烂漫的立辉完成签到 ,获得积分10
12秒前
12秒前
热情依白应助爱咋咋地采纳,获得10
13秒前
13秒前
科研通AI2S应助可乐加冰采纳,获得10
13秒前
王艺霖发布了新的文献求助10
14秒前
桔子发布了新的文献求助10
15秒前
Owen应助唯伊采纳,获得10
16秒前
酷波er应助kk_yang采纳,获得10
17秒前
Benji发布了新的文献求助10
17秒前
mwn发布了新的文献求助10
18秒前
18秒前
小马甲应助喜吉尔采纳,获得10
19秒前
SYX发布了新的文献求助10
19秒前
汉堡包应助Emma采纳,获得10
19秒前
19秒前
20秒前
22秒前
甜卷儿发布了新的文献求助10
22秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695919
求助须知:如何正确求助?哪些是违规求助? 5104189
关于积分的说明 15217573
捐赠科研通 4852052
什么是DOI,文献DOI怎么找? 2602903
邀请新用户注册赠送积分活动 1554576
关于科研通互助平台的介绍 1512634