Multilevel Attention Networks and Policy Reinforcement Learning for Image Caption Generation

隐藏字幕 强化学习 计算机科学 人工智能 卷积神经网络 任务(项目管理) 图像(数学) 人工神经网络 光学(聚焦) 对象(语法) 机器学习 物理 管理 光学 经济
作者
Zhibo Zhou,Xiaoming Zhang,Zhoujun Li,Feiran Huang,Jie Xu
出处
期刊:Big data [Mary Ann Liebert, Inc.]
卷期号:10 (6): 481-492 被引量:4
标识
DOI:10.1089/big.2021.0049
摘要

The analysis of large-scale multimodal data has become very popular recently. Image captioning, whose goal is to describe the content of image with natural language automatically, is an essential and challenging task in artificial intelligence. Commonly, most existing image caption methods utilize the mixture of Convolutional Neural Network and Recurrent Neural Network framework. These methods either pay attention to global representation at the image level or only focus on the specific concepts, such as regions and objects. To make the most of characteristics about a given image, in this study, we present a novel model named Multilevel Attention Networks and Policy Reinforcement Learning for image caption generation. Specifically, our model is composed of a multilevel attention network module and a policy reinforcement learning module. In the multilevel attention network, the object-attention network aims to capture global and local details about objects, whereas the region-attention network obtains global and local features about regions. After that, a policy reinforcement learning algorithm is adopted to overcome the exposure bias problem in the training phase and solve the loss-evaluation mismatching problem at the caption generation stage. With the attention network and policy algorithm, our model can automatically generate accurate and natural sentences for any particular image. We carry out extensive experiments on the MSCOCO and Flickr30k data sets, demonstrating that our model is superior to other competitive methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
王鑫完成签到,获得积分10
刚刚
完美世界应助Shelley采纳,获得30
1秒前
研友_VZG7GZ应助稀饭采纳,获得10
2秒前
2秒前
3秒前
3秒前
champagne完成签到,获得积分10
3秒前
默默班发布了新的文献求助10
3秒前
FYY发布了新的文献求助30
4秒前
在水一方应助怡然的嫣然采纳,获得10
5秒前
6秒前
7秒前
7秒前
8秒前
浅色西完成签到,获得积分10
8秒前
猪猪hero发布了新的文献求助10
8秒前
8秒前
9秒前
zz完成签到,获得积分10
9秒前
SciGPT应助鸽子汤采纳,获得10
9秒前
naomi完成签到 ,获得积分10
10秒前
11秒前
FYY完成签到,获得积分10
11秒前
冠心没有病完成签到,获得积分10
12秒前
zz发布了新的文献求助10
13秒前
穆德梅发布了新的文献求助10
13秒前
稀饭发布了新的文献求助10
13秒前
鑫鑫发布了新的文献求助10
14秒前
14秒前
Позовименя完成签到,获得积分10
17秒前
gao发布了新的文献求助10
17秒前
17秒前
18秒前
may发布了新的文献求助10
18秒前
爆米花应助喂喂采纳,获得10
19秒前
装满阳光的橘子完成签到,获得积分10
19秒前
铅笔完成签到,获得积分10
19秒前
fan完成签到,获得积分10
20秒前
21秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3787809
求助须知:如何正确求助?哪些是违规求助? 3333381
关于积分的说明 10261715
捐赠科研通 3049136
什么是DOI,文献DOI怎么找? 1673429
邀请新用户注册赠送积分活动 801915
科研通“疑难数据库(出版商)”最低求助积分说明 760419