Markov Chain Monte Carlo-based Bayesian method for nonlinear stochastic model updating

马尔科夫蒙特卡洛 贝叶斯推理 算法 非线性系统 后验概率 贝叶斯概率 概率密度函数 计算机科学 蒙特卡罗方法 应用数学 大都会-黑斯廷斯算法 高斯过程 数学 数学优化 高斯分布 人工智能 统计 物理 量子力学
作者
Ya-Jie Ding,Zuo-Cai Wang,Genda Chen,Wei-Xin Ren,Xin Yu
出处
期刊:Journal of Sound and Vibration [Elsevier BV]
卷期号:520: 116595-116595 被引量:4
标识
DOI:10.1016/j.jsv.2021.116595
摘要

This paper proposes a Markov Chain Monte Carlo (MCMC)-based Bayesian method for nonlinear stochastic model updating by using the instantaneous characteristics of the structural dynamic responses. According to the discrete analytical mode decomposed method and Hilbert transform, the instantaneous characteristics of the mono-components are firstly extracted from the structural dynamic response and applied to the calculation of likelihood function. Then, the posterior probability density function associated with Bayesian theorem is derived under the assumption of Gaussian prior distribution by using instantaneous characteristics. Afterwards, to calculate the posterior probability density function and improve the sampling efficiency, the delayed rejection adaptive Metropolis-Hastings (DRAM) algorithm is implemented with the advantages of strong adaptive and fast convergence. In the process of Bayesian inference, the posterior samples generated by DRAM require vast quantities of finite element analysis to guarantee the accuracy. For reducing the computational cost, the response surface model is constructed to establish the mathematical regression model between the structural parameters and the theoretical dynamic responses. To validate the effectiveness and applicability of the proposed method, the numerical cases on a three-story nonlinear structure under earthquake excitation considering various noise level effects and an Iwan beam model with two types of excitations are simulated. In addition, an experimental validation on a ¼ scale, 3-story steel frame structure subjected to a series of earthquake excitations in the laboratory is also performed to further verify the proposed method. Both the numerical and experimental results demonstrate that the DRAM-based Bayesian method can be effectively used to update nonlinear stochastic models with a high accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
nihao2023发布了新的文献求助10
刚刚
我是老大应助高高孤云采纳,获得10
刚刚
1秒前
1秒前
1秒前
wawaaaah完成签到 ,获得积分10
2秒前
2秒前
yinyin发布了新的文献求助10
2秒前
华仔应助slow采纳,获得10
2秒前
随意发布了新的文献求助10
2秒前
大方的迎曼完成签到,获得积分10
3秒前
BiuBiuBiu完成签到 ,获得积分10
4秒前
得鹿梦鱼发布了新的文献求助10
4秒前
乘风破浪完成签到,获得积分10
4秒前
我是老大应助Frost采纳,获得10
5秒前
5秒前
张一二二二完成签到,获得积分10
5秒前
shuli完成签到,获得积分10
6秒前
安详飞鸟发布了新的文献求助10
6秒前
理想小郭完成签到,获得积分10
6秒前
蓝蓝娜娜发布了新的文献求助10
6秒前
7秒前
7秒前
QQWQEQRQ完成签到,获得积分10
7秒前
七羽完成签到 ,获得积分10
9秒前
研友_VZG7GZ应助黄婷采纳,获得10
9秒前
沐子完成签到 ,获得积分10
10秒前
开心最重要完成签到,获得积分10
10秒前
玛卡巴卡完成签到,获得积分10
10秒前
得鹿梦鱼完成签到,获得积分10
10秒前
10秒前
chen完成签到,获得积分10
11秒前
慕青应助Tong采纳,获得10
11秒前
11秒前
幽默贞发布了新的文献求助10
11秒前
梦灵发布了新的文献求助10
11秒前
cxm完成签到,获得积分20
11秒前
FashionBoy应助想象之中采纳,获得10
11秒前
蓝华发布了新的文献求助10
11秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793074
求助须知:如何正确求助?哪些是违规求助? 3337816
关于积分的说明 10287022
捐赠科研通 3054320
什么是DOI,文献DOI怎么找? 1675961
邀请新用户注册赠送积分活动 803951
科研通“疑难数据库(出版商)”最低求助积分说明 761615