Network pharmacology to unveil the mechanism of Moluodan in the treatment of chronic atrophic gastritis

系统药理学 计算生物学 机制(生物学) 细胞生长 细胞 细胞凋亡 炎症 系统生物学 药理学 生物 生物信息学 化学 生物化学 药品 免疫学 哲学 认识论
作者
Wuai Zhou,Huan Zhang,Xin Wang,Jun Kang,WuYan Guo,Lihua Zhou,Huiyun Liu,Menglei Wang,Ruikang Jia,Xinjun Du,Weihua Wang,Bo Zhang,Shao Li
出处
期刊:Phytomedicine [Elsevier BV]
卷期号:95: 153837-153837 被引量:142
标识
DOI:10.1016/j.phymed.2021.153837
摘要

Moluodan (MLD) is a traditional Chinese patent medicine for the treatment of chronic atrophic gastritis (CAG). However, the mechanism of action (MoA) of MLD for treating CAG still remain unclear.Elucidate the MoA of MLD for treating CAG based on network pharmacology.Integrate computational prediction and experimental validation based on network pharmacology.Computationally, compounds of MLD were scanned by LC-MS/MS and the target profiles of compounds were identified based on network-based target prediction method. Compounds in MLD were compared with western drugs used for gastritis by hierarchical clustering of target profile. Key biological functional modules of MLD were analyzed, and herb-biological functional module network was constructed to elucidate combinatorial rules of MLD herbs for CAG. Experimentally, MLD's effect on different biological functional modules were validated from both phenotypic level and molecular level in 1- Methyl-3-nitro-1-nitrosoguanidine (MNNG)-induced GES-1 cells.Computational results show that the target profiles of compounds in MLD can cover most of the biomolecules reported in literature. The MoA of MLD can cover most types of MoA of western drugs for CAG. The treatment of CAG by MLD involved the regulation of various biological functional modules, e.g., inflammation/immune, cell proliferation, cell apoptosis, cell differentiation, digestion and metabolism. Experimental results show that MLD can inhibit cell proliferation, promote cell apoptosis and differentiation, reduce the inflammation level and promote lipid droplet accumulation in MNNG-induced GES-1 cells.The network pharmacology framework integrating computational prediction and experimental validation provides a novel way for exploring the MoA of MLD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赖问筠完成签到 ,获得积分10
刚刚
今后应助czp采纳,获得10
刚刚
权翼发布了新的文献求助10
2秒前
SciGPT应助科研通管家采纳,获得10
2秒前
所所应助科研通管家采纳,获得10
2秒前
华仔应助科研通管家采纳,获得10
2秒前
彭于晏应助科研通管家采纳,获得30
2秒前
2秒前
濠哥妈咪完成签到,获得积分10
2秒前
无敌暴龙战神应助南风采纳,获得80
4秒前
AAA888完成签到,获得积分10
4秒前
xhz发布了新的文献求助20
5秒前
司空豁发布了新的文献求助10
6秒前
rayawe完成签到 ,获得积分10
7秒前
8秒前
8秒前
奥里给完成签到,获得积分10
10秒前
Orange应助远荒采纳,获得10
10秒前
cc发布了新的文献求助10
12秒前
15秒前
Lebranium发布了新的文献求助10
18秒前
司空豁发布了新的文献求助10
18秒前
20秒前
21秒前
22秒前
22秒前
22秒前
rachel发布了新的文献求助30
25秒前
吱吱发布了新的文献求助100
25秒前
dc完成签到,获得积分10
26秒前
zzz发布了新的文献求助10
27秒前
uqfan发布了新的文献求助10
27秒前
莫伊嫣给莫伊嫣的求助进行了留言
28秒前
汉堡包应助诚心的黑猫采纳,获得10
28秒前
28秒前
31秒前
舍瓦完成签到,获得积分10
31秒前
lcj2022发布了新的文献求助10
33秒前
远荒发布了新的文献求助10
35秒前
36秒前
高分求助中
ФОРМИРОВАНИЕ АО "МЕЖДУНАРОДНАЯ КНИГА" КАК ВАЖНЕЙШЕЙ СИСТЕМЫ ОТЕЧЕСТВЕННОГО КНИГОРАСПРОСТРАНЕНИЯ 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3904919
求助须知:如何正确求助?哪些是违规求助? 3449898
关于积分的说明 10859605
捐赠科研通 3175212
什么是DOI,文献DOI怎么找? 1754195
邀请新用户注册赠送积分活动 848221
科研通“疑难数据库(出版商)”最低求助积分说明 790807