Quantum Probability-inspired Graph Attention Network for Modeling Complex Text Interaction

计算机科学 图形 人工智能 理论计算机科学 知识图 复杂网络 机器学习
作者
Peng Yan,Linjing Li,Daniel Zeng
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:234: 107557-
标识
DOI:10.1016/j.knosys.2021.107557
摘要

Abstract Inspired by quantum-like phenomena in human language understanding, recent studies propose quantum probability-inspired neural networks to model natural language by treating words as superposition states and a sentence as a mixed state. However, many complex natural language processing tasks (e.g., emotion–cause pair extraction or joint dialog act recognition and sentiment classification) require modeling the complex and graphical interaction of multiple text pieces (e.g., multiple clauses in a document or multiple utterances in a dialog). The existing quantum probability-inspired neural networks only encode sequential interaction of a sequence of words, but cannot model the complex interaction of text pieces. To generalize the quantum framework from modeling word sequence to modeling complex and graphical text interaction, we propose a Quantum Probability-inspired Graph Attention NeTwork (QPGAT) by combining quantum probability and graph attention mechanism in a unified framework. Specifically, a text interaction graph is firstly constructed to describe the complex interaction of text pieces. Then QPGAT models each text node as a particle in a superposition state and each node’s neighborhood in the graph as a mixed system in a mixed state to learn interaction-aware text node representations. We apply QPGAT to the two important and complex NLP tasks, emotion–cause pair extraction and joint dialog act recognition and sentiment classification. Experiment results show that QPGAT is competitive compared with the state-of-the-art methods on the two complex NLP tasks, demonstrating the effectiveness of QPGAT. Moreover, QPGAT can also provide a reasonable post-hoc explanation about the model decision process for emotion–cause pair extraction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
迷路的小蚂蚁完成签到,获得积分10
3秒前
kk发布了新的文献求助10
5秒前
PICC完成签到 ,获得积分10
5秒前
ybwei2008_163发布了新的文献求助10
6秒前
Lucas应助麦兜兜采纳,获得10
6秒前
6秒前
桐桐应助李兴采纳,获得10
6秒前
6秒前
lizhaonian发布了新的文献求助10
7秒前
8秒前
李明完成签到 ,获得积分10
8秒前
jorgan完成签到,获得积分10
12秒前
12秒前
橘子发布了新的文献求助50
12秒前
包容凌翠发布了新的文献求助10
13秒前
14秒前
赘婿应助冷傲的太英采纳,获得10
15秒前
15秒前
FartKing发布了新的文献求助10
15秒前
liberty完成签到,获得积分10
16秒前
MQ&FF完成签到,获得积分0
16秒前
EDTA完成签到,获得积分10
16秒前
舒服的灰狼完成签到,获得积分10
20秒前
xing发布了新的文献求助10
20秒前
21秒前
小马甲应助codwest采纳,获得10
21秒前
李兴发布了新的文献求助10
22秒前
冯婷完成签到 ,获得积分10
23秒前
JamesPei应助wan12138采纳,获得10
23秒前
FartKing完成签到,获得积分10
23秒前
包容凌翠完成签到,获得积分20
24秒前
sanyecai完成签到,获得积分10
25秒前
研友_nVNBVn发布了新的文献求助10
26秒前
在水一方应助lpx43采纳,获得10
26秒前
curtisness应助小白采纳,获得20
27秒前
27秒前
两栖玩家完成签到 ,获得积分10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
Ricci Solitons in Dimensions 4 and Higher 450
the WHO Classification of Head and Neck Tumors (5th Edition) 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4776757
求助须知:如何正确求助?哪些是违规求助? 4108458
关于积分的说明 12709133
捐赠科研通 3829877
什么是DOI,文献DOI怎么找? 2112710
邀请新用户注册赠送积分活动 1136508
关于科研通互助平台的介绍 1020314