Spatial Reliability Enhanced Correlation Filter: An Efficient Approach for Real-Time UAV Tracking

计算机科学 稳健性(进化) 判别式 BitTorrent跟踪器 实时计算 人工智能 眼动 可靠性(半导体) 计算机视觉 基因 化学 生物化学 量子力学 物理 功率(物理)
作者
Changhong Fu,Jin Jin,Fangqiang Ding,Yiming Li,Geng Lu
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:13
标识
DOI:10.1109/tmm.2021.3118891
摘要

Traditional discriminative correlation filter (DCF) has received great popularity due to its high computational efficiency. However, the lightweight framework of DCF cannot promise robust performance when the tracker faces appearance variations within the background. These unpredictable appearance variations always distract the filter. Most existing DCF-based trackers either utilize deep convolutional features or incorporate additional constraints to elevate tracking robustness. Despite some improvements, both of them hamper the tracking speed and can only roughly alleviate the distractions of appearance variations. In this paper, a novel spatial reliability enhanced learning strategy is proposed to handle the problems aforementioned. By monitoring the variation of response produced in detection phase, a dynamic reliability map is generated to indicate the reliability of each background subregion. Then, label adjustment is conducted to repress the distractions of these unreliable areas. Compared with the conventional way of constraint where a new term is always added to realize the desired goal, label adjustment is simultaneously more efficient and effective. Moreover, to promise the accuracy and dependability of the reliability map, an adaptively updated response pool recording reliable historical response values is proposed. Extensive and exhaustive experiments on three challenging unmanned aerial vehicle (UAV) benchmarks, i.e., UAV123@10fps, DTB70 and UAVDT, which totally include 243 video sequences, validate the superiority of the proposed method against other state-of-the-art trackers and exhibit a remarkable generality in a variety of scenarios. Meanwhile, the tracking speed of 65.2FPS on a cheap CPU makes it suitable for real-time UAV applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sunset发布了新的文献求助10
1秒前
GPTea应助橘子有点酸采纳,获得20
1秒前
青山完成签到,获得积分10
1秒前
MLJ完成签到 ,获得积分10
2秒前
111完成签到,获得积分10
2秒前
lh完成签到 ,获得积分10
2秒前
俞孤风完成签到,获得积分10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
英俊的铭应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
aaa完成签到 ,获得积分10
4秒前
5秒前
lucky完成签到 ,获得积分10
6秒前
7秒前
yy完成签到 ,获得积分10
8秒前
james完成签到,获得积分10
8秒前
黄紫红完成签到 ,获得积分10
10秒前
Sean完成签到,获得积分10
12秒前
青青完成签到 ,获得积分10
12秒前
十九完成签到,获得积分10
13秒前
马前人发布了新的文献求助10
13秒前
行动完成签到,获得积分10
13秒前
orixero应助虚心的芹采纳,获得10
14秒前
邓博完成签到,获得积分10
15秒前
典雅浩轩完成签到,获得积分10
15秒前
星辰完成签到 ,获得积分0
17秒前
东方诩完成签到,获得积分10
17秒前
AslenK完成签到,获得积分10
18秒前
研研研完成签到,获得积分10
19秒前
yeurekar完成签到,获得积分10
21秒前
縤雨完成签到 ,获得积分10
21秒前
钱钱完成签到,获得积分10
22秒前
调皮醉波完成签到 ,获得积分10
23秒前
跳跃的迎荷完成签到 ,获得积分10
23秒前
hhhhhha完成签到,获得积分10
24秒前
muBai嘎嘎牛完成签到,获得积分10
24秒前
十八完成签到,获得积分10
25秒前
晓晓完成签到,获得积分10
25秒前
25秒前
荀煜祺完成签到,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Extreme ultraviolet pellicle cooling by hydrogen gas flow (Conference Presentation) 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5175086
求助须知:如何正确求助?哪些是违规求助? 4364428
关于积分的说明 13586706
捐赠科研通 4213528
什么是DOI,文献DOI怎么找? 2311076
邀请新用户注册赠送积分活动 1310068
关于科研通互助平台的介绍 1258103