Communication-Efficient Federated Learning for Connected Vehicles with Constrained Resources

计算机科学 上传 量化(信号处理) 架空(工程) 云计算 无线 分布式计算 计算机网络 联合学习 无线网络 实时计算 算法 电信 操作系统
作者
Shuaiqi Shen,Chong Yu,Kuan Zhang,Xi Chen,Huimin Chen,Song Ci
标识
DOI:10.1109/iwcmc51323.2021.9498677
摘要

With the upcoming next generation wireless network, vehicles are expected to be empowered by artificial intelligence (AI). By connecting vehicles and cloud server via wireless communication, federated learning (FL) allows vehicles to collaboratively train deep learning models to support intelligent services, such as autonomous driving. However, the large number of vehicles and increasing size of model parameters bring challenges to FL-empowered connected vehicles. Since communication bandwidth is insufficient to upload full-precision local models from numerous vehicles, model compression is usually conducted to reduce transmitted data size. Nevertheless, conventional model compression methods may not be practical for resource-constrained vehicles due to the increasing computational overhead for FL training. The overhead for downloading global model can also be omitted by existing methods since they are originally designed for centralized learning instead of FL. In this paper, we propose a ternary quantization based model compression method on communication-efficient FL for resource-constrained connected vehicles. Specifically, we firstly propose a ternary quantization based local model training algorithm that optimizes quantization factors and parameters simultaneously. Then, we design a communication-efficient FL approach that reduces overhead for both upstream and downstream communications. Finally, simulation results validate that the proposed method demands the lowest communication and computational overheads for FL training, while maintaining desired model accuracy compared to existing model compression methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WANGGE完成签到 ,获得积分10
刚刚
Capybara发布了新的文献求助10
1秒前
1秒前
麦田里的守望者完成签到,获得积分10
2秒前
无敌的记号完成签到,获得积分10
3秒前
3秒前
11发布了新的文献求助10
3秒前
iu完成签到,获得积分10
5秒前
斯文败类应助小肖采纳,获得10
6秒前
7秒前
7秒前
研友_pnx37L发布了新的文献求助10
8秒前
慈祥的爆米花完成签到,获得积分10
10秒前
尊敬寒松发布了新的文献求助10
13秒前
nulinuli发布了新的文献求助10
13秒前
阔达斑马应助甜美的一兰采纳,获得50
15秒前
16秒前
开放的大侠完成签到,获得积分10
16秒前
wyp87完成签到,获得积分10
17秒前
午见千山应助清爽的秋柳采纳,获得10
18秒前
18秒前
wyb发布了新的文献求助10
20秒前
22秒前
22秒前
24秒前
冰魂应助jj158采纳,获得10
26秒前
冰魂应助guangshuang采纳,获得10
27秒前
VISIN发布了新的文献求助100
27秒前
YZ发布了新的文献求助10
27秒前
进退须臾完成签到,获得积分10
28秒前
PWG完成签到,获得积分10
28秒前
28秒前
29秒前
温文尔雅完成签到,获得积分10
29秒前
yanxuhuan完成签到 ,获得积分10
29秒前
30秒前
Monica完成签到,获得积分10
30秒前
33秒前
33秒前
34秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781693
求助须知:如何正确求助?哪些是违规求助? 3327300
关于积分的说明 10230275
捐赠科研通 3042139
什么是DOI,文献DOI怎么找? 1669791
邀请新用户注册赠送积分活动 799374
科研通“疑难数据库(出版商)”最低求助积分说明 758792