Review of Feature Selection Methods and Semi Supervised Feature Selection Algorithms for Classification

特征选择 可解释性 计算机科学 人工智能 降维 机器学习 特征提取 特征(语言学) 维数之咒 数据挖掘 最小冗余特征选择 选择(遗传算法) 模式识别(心理学) 哲学 语言学
作者
A. Meena Kowshalya,M. Lincy,Reshma Suvarna
出处
期刊:International journal of software computing and testing [Journals PUB]
卷期号:6 (1): 39-51
摘要

Current evolution in technology has resulted in tremendous growth of data with respect to dimensionality and sample size. Knowledge discovery from these high dimensional data are becoming cumbersome. Though powerful machine learning algorithms are prevalent, noisy data, imperfect sensing and collection of data leads to poor and defective knowledge discovery. Noise and redundant features cannot be circumvented due to which data collection process is biased. Dimensionality reduction techniques namely feature extraction and feature selections are the two most popular techniques to remove redundant and irrelevant features in huge dimensional data. Compared to feature extraction, feature selection leads to better readability and interpretability of features. This paper presents an extensive preliminary understanding about feature selection and attempts a comprehensive recent survey of semi supervised feature selection methods. This summary enables the researcher to obtain a deep understanding in choice of semi supervised feature selection algorithms for improving the learning performance. Keywords: Feature Selection, Semi supervised learning, Filters, Wrappers, Hybrid methods. Cite this Article: A. Meena Kowshalya, M.Lincy, R. Suvarna. Review of Feature Selection Methods and Semi Supervised Feature Selection Algorithms for Classification. International Journal of Software Computing and Testing. 2020; 6(1): 39–51p.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助wyl采纳,获得10
刚刚
hhh发布了新的文献求助10
刚刚
所所应助小白采纳,获得10
刚刚
2秒前
zhaonana完成签到 ,获得积分10
2秒前
科研通AI5应助daxiooo11采纳,获得10
4秒前
小米超辣发布了新的文献求助10
4秒前
科目三应助猴儿采纳,获得10
4秒前
5秒前
万能图书馆应助euphoria采纳,获得10
6秒前
7秒前
8秒前
zxy发布了新的文献求助10
8秒前
优雅小霜发布了新的文献求助10
8秒前
judy发布了新的文献求助10
9秒前
谢雨晨发布了新的文献求助10
11秒前
13秒前
MchemG应助hhh采纳,获得10
13秒前
科研通AI5应助heyheybaby采纳,获得10
13秒前
小羊几点啦完成签到,获得积分10
14秒前
科研通AI5应助Cloud采纳,获得30
14秒前
Elin完成签到,获得积分10
15秒前
大个应助asdfghjkl采纳,获得10
15秒前
15秒前
euphoria发布了新的文献求助10
17秒前
小徐801完成签到,获得积分10
19秒前
cc给cc的求助进行了留言
19秒前
19秒前
JamesPei应助小米超辣采纳,获得10
19秒前
20秒前
jiayou完成签到,获得积分10
20秒前
健壮傲芙发布了新的文献求助10
21秒前
21秒前
琪琪完成签到,获得积分10
25秒前
橙子发布了新的文献求助10
25秒前
温暖芷文发布了新的文献求助30
26秒前
科研通AI5应助XLC采纳,获得10
27秒前
琪琪发布了新的文献求助10
28秒前
庾灭男完成签到,获得积分10
29秒前
29秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799816
求助须知:如何正确求助?哪些是违规求助? 3345094
关于积分的说明 10323610
捐赠科研通 3061657
什么是DOI,文献DOI怎么找? 1680474
邀请新用户注册赠送积分活动 807093
科研通“疑难数据库(出版商)”最低求助积分说明 763462