Research on diagnosis algorithm of mechanical equipment brake friction fault based on MCNN-SVM

支持向量机 制动器 断层(地质) 特征(语言学) 人工智能 特征向量 卷积神经网络 计算机科学 算法 工程类 模式识别(心理学) 机器学习 汽车工程 地质学 地震学 哲学 语言学
作者
Xunjie Zhang,Min Zhang,Zaiyu Xiang,Jiliang Mo
出处
期刊:Measurement [Elsevier BV]
卷期号:186: 110065-110065 被引量:25
标识
DOI:10.1016/j.measurement.2021.110065
摘要

Brakes in mechanical equipment are crucial for operational safety, and their effects are directly affected by friction performance. The fault signal induced by friction interface presents the phenomenon of multi-source, and the fault samples are difficult to obtain in practical engineering. Both aspects yield unsatisfactory recognition performance of diagnosis models. To address the issues, in this article, we proposed an algorithm based on a modified convolutional neural network (CNN) and support vector machine (SVM). First, dynamic features were extracted from the friction factor and friction surface temperature as samples, which could effectively present the state of brake friction. Next, CNN was used to learn feature knowledge from dynamic feature set, the Mish activation function, batch normalisation and dropout were employed to complete the training of modified CNN (MCNN). Then, the dynamic feature set was input into the trained MCNN again to learn the feature representations of friction state. Finally, the feature representations were migrated to SVM to establish the mapping between feature space and label space, and the final fault recognition was completed. The proposed algorithm fully combined the powerful feature learning ability of MCNN and the excellent classification performance of SVM on small samples. Experiment results showed that MCNN-SVM had faster convergence speed, and the accuracy of the proposed algorithm reached 100%. Its diagnosis effect was better than counterpart algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
浩浩发布了新的文献求助10
2秒前
kuoping完成签到,获得积分10
3秒前
4秒前
赵文若发布了新的文献求助10
4秒前
南宫萍发布了新的文献求助10
7秒前
清爽老九应助卢敏明采纳,获得10
9秒前
14秒前
14秒前
15秒前
jackhlj完成签到,获得积分10
15秒前
Conquer_Fate发布了新的文献求助10
16秒前
MaYue完成签到,获得积分10
18秒前
20秒前
ffffwj2024完成签到 ,获得积分10
21秒前
21秒前
清爽老九应助卢敏明采纳,获得10
22秒前
孙俪发布了新的文献求助10
22秒前
yizili完成签到,获得积分20
26秒前
科研通AI5应助南宫萍采纳,获得10
27秒前
27秒前
29秒前
29秒前
我剑也未尝不利应助小刘采纳,获得20
30秒前
雅雅发布了新的文献求助10
32秒前
兮pqsn发布了新的文献求助10
33秒前
Jason完成签到 ,获得积分10
34秒前
景碧空完成签到,获得积分10
34秒前
34秒前
渠安完成签到 ,获得积分10
34秒前
少年完成签到,获得积分10
36秒前
36秒前
小马甲应助Pt-SACs采纳,获得10
37秒前
俞璐发布了新的文献求助10
37秒前
景碧空发布了新的文献求助10
38秒前
今天只做一件事应助daidai采纳,获得10
39秒前
Owen应助紫色奶萨采纳,获得10
39秒前
40秒前
hhh发布了新的文献求助10
40秒前
SunnyZjw发布了新的文献求助10
43秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Platinum-group elements : mineralogy, geology, recovery 260
Geopora asiatica sp. nov. from Pakistan 230
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780550
求助须知:如何正确求助?哪些是违规求助? 3326021
关于积分的说明 10225203
捐赠科研通 3041114
什么是DOI,文献DOI怎么找? 1669215
邀请新用户注册赠送积分活动 799021
科研通“疑难数据库(出版商)”最低求助积分说明 758669