亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Ni/Hydrochar Nanostructures Derived from Biomass as Catalysts for H2 Production through Aqueous-Phase Reforming of Methanol

材料科学 化学工程 杂原子 催化作用 纳米复合材料 制氢 纳米技术 介孔材料 化学 有机化学 工程类 戒指(化学)
作者
Chao Gai,Xia Wang,Jinghai Liu,Zhengang Liu,Yong Sik Ok,Wen Li,Alex C.K. Yip
出处
期刊:ACS applied nano materials [American Chemical Society]
卷期号:4 (9): 8958-8971 被引量:6
标识
DOI:10.1021/acsanm.1c01537
摘要

Aqueous-phase reforming of organic molecules to hydrogen is a promising strategy to address the production and storage of sustainable hydrogen with lower costs; however, the synthesis of inexpensive transition metal (TM) catalysts with desirable activity and stability for the reaction is still challenging. In this work, a green and efficient approach for modulating the geometric/electronic structure of metal/hydrochar nanocomposites from sustainable biomass was proposed for enhancing H2 production via aqueous-phase reforming of methanol (APRM). A Ni/HC nanocomposite with a special thistle (a perennial species of flowering plant)-like three-dimensional (3D) architecture was first constructed as a model catalyst to expatiate the critical role of modulating an ordered mesoporous structure and interface electron transfer for enhancing APRM. Deliberately balancing heteroatom doping and soft templates contribute to the successful fabrication of the thistle-like superstructure, and such hierarchically porous architectures demonstrated efficient catalysis for APRM, owing to their unique properties, including a highly uniform morphology, narrow particle size distribution, and mesoporous texture with excellent accessibility. In addition, the experimental investigation and density functional theory calculations both substantiated that the combination of heteroatom doping and soft templates was beneficial for the strong electronic metal–support interaction (EMSI) of the metal/hydrochar nanocomposite, which leads to enhanced methanol adsorption, activation, and subsequently improved APRM performance. The electronic structure of the metal/hydrochar nanocomposite played a more significant effect on the intrinsic APRM activity than the geometric structure like the formation of the thistle-like superstructure. Benefiting from the tailored electronic and geometric structure, the resulting Ni0.1/HC-N1.5-S1 catalyst exhibited an unprecedented average turnover frequency (TOF) of 89.5 molH2/molNi/min, higher than any other known platinum group metal-free catalysts, approaching the reactivity of the state-of-the-art noble metal-based APRM catalysts, while showing excellent stability over 10 consecutive reaction cycles.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Leo完成签到 ,获得积分10
10秒前
Sean完成签到 ,获得积分10
34秒前
lixuebin完成签到 ,获得积分10
56秒前
keyan123完成签到 ,获得积分10
2分钟前
科目三应助轻松黑裤采纳,获得10
2分钟前
2分钟前
轻松黑裤发布了新的文献求助10
2分钟前
轻松黑裤完成签到,获得积分20
3分钟前
3分钟前
Wcy发布了新的文献求助10
3分钟前
酷波er应助轻松黑裤采纳,获得10
3分钟前
天天快乐应助Wcy采纳,获得10
3分钟前
实验体8567号完成签到,获得积分10
3分钟前
Eric800824完成签到 ,获得积分10
4分钟前
闪闪的硬币完成签到 ,获得积分10
4分钟前
握瑾怀瑜完成签到 ,获得积分0
6分钟前
bkagyin应助无限妙梦采纳,获得10
6分钟前
6分钟前
无限妙梦发布了新的文献求助10
6分钟前
7分钟前
小w发布了新的文献求助10
7分钟前
7分钟前
小w发布了新的文献求助10
7分钟前
舟舟完成签到 ,获得积分10
7分钟前
7分钟前
小w发布了新的文献求助10
7分钟前
饺子生面包完成签到 ,获得积分10
7分钟前
桐桐应助科研通管家采纳,获得10
8分钟前
无限妙梦完成签到,获得积分10
8分钟前
8分钟前
123完成签到,获得积分10
8分钟前
123发布了新的文献求助10
8分钟前
复方蛋酥卷完成签到,获得积分10
8分钟前
Sunnpy完成签到 ,获得积分10
9分钟前
单薄碧灵完成签到 ,获得积分10
9分钟前
激昂的松鼠完成签到,获得积分10
11分钟前
Research完成签到 ,获得积分10
11分钟前
似水流年完成签到 ,获得积分10
11分钟前
12分钟前
DDL发布了新的文献求助10
12分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780825
求助须知:如何正确求助?哪些是违规求助? 3326345
关于积分的说明 10226601
捐赠科研通 3041516
什么是DOI,文献DOI怎么找? 1669491
邀请新用户注册赠送积分活动 799063
科研通“疑难数据库(出版商)”最低求助积分说明 758732