A V-Mn Redox Flow Battery for Concomitant Energy Storage and Hydrogen Production

流动电池 氧化还原 储能 电解质 电解 制氢 电解水 电池(电) 聚合物电解质膜电解 电力转天然气 化学 化学工程 催化作用 材料科学 无机化学 电极 功率(物理) 有机化学 物理 工程类 物理化学 量子力学
作者
Danick Reynard,Sunny Maye,Bhawna Nagar,Hubert H. Girault
出处
期刊:Meeting abstracts 卷期号:MA2021-01 (1): 27-27
标识
DOI:10.1149/ma2021-01127mtgabs
摘要

Redox flow battery (RFB) has drawn considerable attention past years for large-scale energy storage applications. However, RFB’s suffer from low energy density and premature degradation failures were reported due to uncontrolled electrolyte imbalance, limiting their commercialization. To address those concerns, we proposed in 2014 an innovative concept called ''dual-circuit redox flow battery’’[1]. This system is distinct from the conventional RFB in that the former includes a secondary energy platform, in which electrical energy can be converted into hydrogen via mediated water electrolysis. In fact, the positive and the negative charged redox species can be circulated in external catalytic bed reactors (out of the electrochemical cell), where they will respectively act as electron mediators (donor and acceptor) to carry out water oxidation and proton reduction over the catalysts. The dual-flow circuit RFB has the advantage to store energy beyond the capacity of the conventional RFB due to the higher volumetric capacity of the hydrogen energy carrier. Furthermore, mediated water electrolysis gives the opportunity to decouple oxygen evolution and hydrogen evolution reactions in time and in space, unlike conventional technologies (e.g alkaline and polymer electrolyte membrane electrolysers). This feature enables to avoid O 2 and H 2 recombination, addressing materials degradation and safety concerns. Additionally, the temporal/spatial separation of water splitting reactions allows us to design bed reactors using less active and cheaper electrocatalysts and facilitates the electrolytes rebalancing. In this work, a complete proof-of-concept of a novel dual-flow circuit based on a vanadium-manganese RFB has been demonstrated (Figure 1). First, we studied the influence of Ti(IV) or V(V) additives on Mn(III) stability in high acidic medium. V(V) was observed to enhance the stability of Mn(III) as compared to Ti(IV), which is of high interest for improving the performances and the cyclability of the system [2]. Then, the chemical discharges of Mn and V electrolytes over Mo 2 C and RuO 2 electrocatalysts were demonstrated. Additionally, we elaborated a kinetic model as a predictive tool for the vanadium-mediated hydrogen evolution on Mo 2 C electrocatalyst [3]. Finally, the V-Mn redox flow battery was designed at lab-scale and was operated up to 50 cycles between 20 and 80% SOC at 50 mA/cm – 2 . The catalytic bed reactors were designed using an innovative approach for fast and cheap catalyst preparation. Hydrogen production was carried out at 10 bars and the system achieved an overall efficiency of 70%. [1] V. Amstutz et al. , « Renewable hydrogen generation from a dual-circuit redox flow battery », Energy Environ. Sci. , vol. 7, n o 7, p. 2350-2358, juin 2014, doi: 10.1039/C4EE00098F. [2] D. Reynard, S. Maye, P. Peljo, V. Chanda, H. H. Girault, et S. Gentil, « Vanadium–Manganese Redox Flow Battery: Study of MnIII Disproportionation in the Presence of Other Metallic Ions », Chemistry – A European Journal , vol. 26, n o 32, p. 7250-7257, juin 2020, doi: 10.1002/chem.202000340. [3] D. Reynard, G. Bolik-Coulon, S. Maye, et H. H. Girault, « Hydrogen production on demand by redox-mediated electrocatalysis: A kinetic study », Chemical Engineering Journal , p. 126721, août 2020, doi: 10.1016/j.cej.2020.126721. Figure 1 Schematic of the dual-circuit V-Mn redox flow battery for concomitant energy storage and hydrogen production Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lll发布了新的文献求助10
1秒前
淡然丹妗发布了新的文献求助10
1秒前
沐浠完成签到 ,获得积分10
2秒前
zf2023发布了新的文献求助30
2秒前
奋斗藏花完成签到,获得积分10
3秒前
sweet雪儿妞妞完成签到 ,获得积分10
4秒前
Cheryy发布了新的文献求助10
4秒前
哈哈王子发布了新的文献求助30
7秒前
唠叨的无极完成签到,获得积分10
8秒前
斯文败类应助斯文胡萝卜采纳,获得10
9秒前
10秒前
10秒前
好的哥完成签到,获得积分10
11秒前
11秒前
Fox发布了新的文献求助10
12秒前
13秒前
renxiaoting发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
失眠紫真发布了新的文献求助10
15秒前
现代的妍发布了新的文献求助10
17秒前
18秒前
温柔迎海发布了新的文献求助10
18秒前
19秒前
ZHANG完成签到,获得积分10
19秒前
Lucas应助李现真滴帅采纳,获得10
19秒前
CodeCraft应助雪原火狐采纳,获得10
21秒前
过氧化氢完成签到,获得积分10
22秒前
在水一方应助小叶白猫采纳,获得10
23秒前
冰魂应助戴先森采纳,获得10
23秒前
淡然丹妗完成签到,获得积分10
24秒前
24秒前
25秒前
失眠紫真完成签到,获得积分10
26秒前
xiewuhua完成签到,获得积分10
27秒前
27秒前
lucaslucas完成签到,获得积分10
27秒前
研友_VZG7GZ应助超帅的访梦采纳,获得10
27秒前
27秒前
27秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Learning to Listen, Listening to Learn 520
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3866757
求助须知:如何正确求助?哪些是违规求助? 3409176
关于积分的说明 10661921
捐赠科研通 3133281
什么是DOI,文献DOI怎么找? 1728138
邀请新用户注册赠送积分活动 832684
科研通“疑难数据库(出版商)”最低求助积分说明 780393