Improving Registration Robustness for Image-Guided Liver Surgery in a Novel Human-to-Phantom Data Framework

计算机科学 人工智能 成像体模 计算机视觉 图像配准 稳健性(进化) 分割 图像质量 医学影像学 迭代重建 算法 生物医学工程
作者
Jerry C. Collins,Jared A. Weis,Jon S. Heiselman,Logan W. Clements,Amber L. Simpson,William R. Jarnagin,Michael I. Miga
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:36 (7): 1502-1510 被引量:34
标识
DOI:10.1109/tmi.2017.2668842
摘要

In open image-guided liver surgery (IGLS), a sparse representation of the intraoperative organ surface can be acquired to drive image-to-physical registration. We hypothesize that uncharacterized error induced by variation in the collection patterns of organ surface data limits the accuracy and robustness of an IGLS registration. Clinical validation of such registration methods is challenged due to the difficulty in obtaining data representative of the true state of organ deformation. We propose a novel human-to-phantom validation framework that transforms surface collection patterns from in vivo IGLS procedures (n = 13) onto a well-characterized hepatic deformation phantom for the purpose of validating surface-driven, volumetric nonrigid registration methods. An important feature of the approach is that it centers on combining workflow-realistic data acquisition and surgical deformations that are appropriate in behavior and magnitude. Using the approach, we investigate volumetric target registration error (TRE) with both current rigid IGLS and our improved nonrigid registration methods. Additionally, we introduce a spatial data resampling approach to mitigate the workflow-sensitive sampling problem. Using our human-to-phantom approach, TRE after routine rigid registration was 10.9 ± 0.6 mm with a signed closest point distance associated with residual surface fit in the range of ±10 mm, highly representative of open liver resections. After applying our novel resampling strategy and improved deformation correction method, TRE was reduced by 51%, i.e., a TRE of 5.3 ± 0.5 mm. This paper reported herein realizes a novel tractable approach for the validation of image-to-physical registration methods and demonstrates promising results for our correction method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
善学以致用应助江璃采纳,获得10
3秒前
fuguier发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
5秒前
酷炫茉莉完成签到,获得积分10
6秒前
7秒前
任雨洁发布了新的文献求助10
8秒前
霖昭应助江璃采纳,获得10
8秒前
鲤鱼发布了新的文献求助10
9秒前
阿文在读研完成签到 ,获得积分10
10秒前
王志霞发布了新的文献求助10
10秒前
樂酉发布了新的文献求助10
10秒前
小马甲应助合适的醉蓝采纳,获得30
10秒前
南风发布了新的文献求助20
12秒前
无花果应助珍_011采纳,获得20
12秒前
Shauna发布了新的文献求助10
12秒前
Jasper应助江璃采纳,获得10
12秒前
完美世界应助hfhyf采纳,获得10
13秒前
JamesPei应助lili采纳,获得10
15秒前
shicp完成签到,获得积分10
16秒前
17秒前
斯文败类应助dp_nj采纳,获得10
17秒前
完美世界应助大意的笑寒采纳,获得10
17秒前
Shauna完成签到,获得积分10
18秒前
LU发布了新的文献求助10
19秒前
签到发布了新的文献求助10
22秒前
22秒前
23秒前
机灵的成协完成签到,获得积分10
25秒前
26秒前
深情安青应助柔弱吉利蛋采纳,获得10
26秒前
小蘑菇应助樂酉采纳,获得10
27秒前
打打应助鲤鱼采纳,获得10
27秒前
lizibelle完成签到,获得积分10
28秒前
顾矜应助冰冰采纳,获得10
30秒前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
《続天台宗全書・史伝1 天台大師伝注釈類》 300
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3839747
求助须知:如何正确求助?哪些是违规求助? 3382082
关于积分的说明 10521084
捐赠科研通 3101451
什么是DOI,文献DOI怎么找? 1708109
邀请新用户注册赠送积分活动 822159
科研通“疑难数据库(出版商)”最低求助积分说明 773208