已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Improving Registration Robustness for Image-Guided Liver Surgery in a Novel Human-to-Phantom Data Framework

计算机科学 人工智能 成像体模 计算机视觉 图像配准 稳健性(进化) 分割 图像质量 医学影像学 迭代重建 算法 生物医学工程
作者
Jerry C. Collins,Jared A. Weis,Jon S. Heiselman,Logan W. Clements,Amber L. Simpson,William R. Jarnagin,Michael I. Miga
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:36 (7): 1502-1510 被引量:34
标识
DOI:10.1109/tmi.2017.2668842
摘要

In open image-guided liver surgery (IGLS), a sparse representation of the intraoperative organ surface can be acquired to drive image-to-physical registration. We hypothesize that uncharacterized error induced by variation in the collection patterns of organ surface data limits the accuracy and robustness of an IGLS registration. Clinical validation of such registration methods is challenged due to the difficulty in obtaining data representative of the true state of organ deformation. We propose a novel human-to-phantom validation framework that transforms surface collection patterns from in vivo IGLS procedures (n = 13) onto a well-characterized hepatic deformation phantom for the purpose of validating surface-driven, volumetric nonrigid registration methods. An important feature of the approach is that it centers on combining workflow-realistic data acquisition and surgical deformations that are appropriate in behavior and magnitude. Using the approach, we investigate volumetric target registration error (TRE) with both current rigid IGLS and our improved nonrigid registration methods. Additionally, we introduce a spatial data resampling approach to mitigate the workflow-sensitive sampling problem. Using our human-to-phantom approach, TRE after routine rigid registration was 10.9 ± 0.6 mm with a signed closest point distance associated with residual surface fit in the range of ±10 mm, highly representative of open liver resections. After applying our novel resampling strategy and improved deformation correction method, TRE was reduced by 51%, i.e., a TRE of 5.3 ± 0.5 mm. This paper reported herein realizes a novel tractable approach for the validation of image-to-physical registration methods and demonstrates promising results for our correction method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
多发paper啊完成签到,获得积分10
刚刚
十八鱼应助Mei采纳,获得10
刚刚
Lucas应助taku采纳,获得10
刚刚
汉堡包应助尹恩惠采纳,获得10
1秒前
大道独行发布了新的文献求助10
2秒前
4秒前
文博发布了新的文献求助10
5秒前
6秒前
彭于晏应助陶之遥遥采纳,获得50
6秒前
花里胡哨的花完成签到 ,获得积分10
8秒前
赘婿应助大道独行采纳,获得10
9秒前
廉6666完成签到,获得积分10
9秒前
10秒前
10秒前
vinwwy完成签到,获得积分20
11秒前
dddsss发布了新的文献求助10
11秒前
Lojong发布了新的文献求助10
12秒前
89岁卧床看文完成签到 ,获得积分10
12秒前
13秒前
14秒前
尹恩惠发布了新的文献求助10
14秒前
HaCat应助科研通管家采纳,获得10
14秒前
Raven应助科研通管家采纳,获得10
14秒前
完美世界应助科研通管家采纳,获得10
14秒前
丘比特应助科研通管家采纳,获得10
14秒前
华仔应助科研通管家采纳,获得10
15秒前
上官若男应助科研通管家采纳,获得10
15秒前
Raven应助科研通管家采纳,获得10
15秒前
15秒前
科研通AI6应助科研通管家采纳,获得10
15秒前
科研通AI6应助科研通管家采纳,获得10
15秒前
寒冷的青筠完成签到 ,获得积分10
15秒前
豆子应助科研通管家采纳,获得30
15秒前
浮游应助科研通管家采纳,获得10
15秒前
15秒前
我是老大应助科研通管家采纳,获得10
15秒前
Criminology34应助科研通管家采纳,获得10
16秒前
zzh应助科研通管家采纳,获得10
16秒前
哈基米德应助科研通管家采纳,获得20
16秒前
英俊的铭应助科研通管家采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5290442
求助须知:如何正确求助?哪些是违规求助? 4441811
关于积分的说明 13828478
捐赠科研通 4324419
什么是DOI,文献DOI怎么找? 2373720
邀请新用户注册赠送积分活动 1369137
关于科研通互助平台的介绍 1333114