Improving Registration Robustness for Image-Guided Liver Surgery in a Novel Human-to-Phantom Data Framework

计算机科学 人工智能 成像体模 计算机视觉 图像配准 稳健性(进化) 分割 图像质量 医学影像学 迭代重建 算法 生物医学工程
作者
Jerry C. Collins,Jared A. Weis,Jon S. Heiselman,Logan W. Clements,Amber L. Simpson,William R. Jarnagin,Michael I. Miga
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:36 (7): 1502-1510 被引量:34
标识
DOI:10.1109/tmi.2017.2668842
摘要

In open image-guided liver surgery (IGLS), a sparse representation of the intraoperative organ surface can be acquired to drive image-to-physical registration. We hypothesize that uncharacterized error induced by variation in the collection patterns of organ surface data limits the accuracy and robustness of an IGLS registration. Clinical validation of such registration methods is challenged due to the difficulty in obtaining data representative of the true state of organ deformation. We propose a novel human-to-phantom validation framework that transforms surface collection patterns from in vivo IGLS procedures (n = 13) onto a well-characterized hepatic deformation phantom for the purpose of validating surface-driven, volumetric nonrigid registration methods. An important feature of the approach is that it centers on combining workflow-realistic data acquisition and surgical deformations that are appropriate in behavior and magnitude. Using the approach, we investigate volumetric target registration error (TRE) with both current rigid IGLS and our improved nonrigid registration methods. Additionally, we introduce a spatial data resampling approach to mitigate the workflow-sensitive sampling problem. Using our human-to-phantom approach, TRE after routine rigid registration was 10.9 ± 0.6 mm with a signed closest point distance associated with residual surface fit in the range of ±10 mm, highly representative of open liver resections. After applying our novel resampling strategy and improved deformation correction method, TRE was reduced by 51%, i.e., a TRE of 5.3 ± 0.5 mm. This paper reported herein realizes a novel tractable approach for the validation of image-to-physical registration methods and demonstrates promising results for our correction method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
难过云朵完成签到 ,获得积分10
刚刚
隐形曼青应助neverlost6采纳,获得10
刚刚
风趣烤鸡完成签到,获得积分10
刚刚
kangkang完成签到,获得积分10
1秒前
李健的小迷弟应助四月采纳,获得10
1秒前
1秒前
1秒前
Ben发布了新的文献求助10
1秒前
知行合一发布了新的文献求助10
1秒前
SBQHY完成签到,获得积分10
2秒前
三颗星南极三完成签到 ,获得积分10
2秒前
天真绿发布了新的文献求助10
2秒前
阔达如柏完成签到,获得积分10
2秒前
雪白炎彬完成签到,获得积分10
3秒前
栀觉发布了新的文献求助10
3秒前
4秒前
大意的白翠完成签到,获得积分10
4秒前
meteor完成签到,获得积分10
5秒前
梁洲发布了新的文献求助20
5秒前
中森明菜完成签到,获得积分10
5秒前
斯文败类应助200308156313采纳,获得10
5秒前
淡然的初阳完成签到,获得积分10
6秒前
TL关注了科研通微信公众号
6秒前
7秒前
smile完成签到,获得积分10
7秒前
8秒前
fire完成签到 ,获得积分10
8秒前
sunyanghu369发布了新的文献求助10
8秒前
8秒前
8秒前
好运粥完成签到 ,获得积分10
9秒前
urtp完成签到,获得积分10
9秒前
张琨完成签到 ,获得积分10
10秒前
10秒前
11秒前
万能图书馆应助胖胖桑采纳,获得10
11秒前
一个人的朝圣完成签到,获得积分10
11秒前
11秒前
我是老大应助冀1采纳,获得10
11秒前
英姑应助channy采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629839
求助须知:如何正确求助?哪些是违规求助? 4720715
关于积分的说明 14970892
捐赠科研通 4787804
什么是DOI,文献DOI怎么找? 2556517
邀请新用户注册赠送积分活动 1517691
关于科研通互助平台的介绍 1478271