清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

The Objective Identification and Quantification of Interstitial Lung Abnormalities in Smokers

鉴定(生物学) 医学 病理 内科学 生物 植物
作者
Samuel Y. Ash,Rola Harmouche,James C. Ross,Alejandro A. Díaz,Gary M. Hunninghake,Rachel K. Putman,Jorge Onieva Onieva,Fernando J. Martínez,Augustine M.K. Choi,David A. Lynch,Hiroto Hatabu,Iván O. Rosas,Raúl San Jośe Estépar,George R. Washko
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:24 (8): 941-946 被引量:55
标识
DOI:10.1016/j.acra.2016.08.023
摘要

Rationale and Objectives Previous investigation suggests that visually detected interstitial changes in the lung parenchyma of smokers are highly clinically relevant and predict outcomes, including death. Visual subjective analysis to detect these changes is time-consuming, insensitive to subtle changes, and requires training to enhance reproducibility. Objective detection of such changes could provide a method of disease identification without these limitations. The goal of this study was to develop and test a fully automated image processing tool to objectively identify radiographic features associated with interstitial abnormalities in the computed tomography scans of a large cohort of smokers. Materials and Methods An automated tool that uses local histogram analysis combined with distance from the pleural surface was used to detect radiographic features consistent with interstitial lung abnormalities in computed tomography scans from 2257 individuals from the Genetic Epidemiology of COPD study, a longitudinal observational study of smokers. The sensitivity and specificity of this tool was determined based on its ability to detect the visually identified presence of these abnormalities. Results The tool had a sensitivity of 87.8% and a specificity of 57.5% for the detection of interstitial lung abnormalities, with a c-statistic of 0.82, and was 100% sensitive and 56.7% specific for the detection of the visual subtype of interstitial abnormalities called fibrotic parenchymal abnormalities, with a c-statistic of 0.89. Conclusions In smokers, a fully automated image processing tool is able to identify those individuals who have interstitial lung abnormalities with moderate sensitivity and specificity. Previous investigation suggests that visually detected interstitial changes in the lung parenchyma of smokers are highly clinically relevant and predict outcomes, including death. Visual subjective analysis to detect these changes is time-consuming, insensitive to subtle changes, and requires training to enhance reproducibility. Objective detection of such changes could provide a method of disease identification without these limitations. The goal of this study was to develop and test a fully automated image processing tool to objectively identify radiographic features associated with interstitial abnormalities in the computed tomography scans of a large cohort of smokers. An automated tool that uses local histogram analysis combined with distance from the pleural surface was used to detect radiographic features consistent with interstitial lung abnormalities in computed tomography scans from 2257 individuals from the Genetic Epidemiology of COPD study, a longitudinal observational study of smokers. The sensitivity and specificity of this tool was determined based on its ability to detect the visually identified presence of these abnormalities. The tool had a sensitivity of 87.8% and a specificity of 57.5% for the detection of interstitial lung abnormalities, with a c-statistic of 0.82, and was 100% sensitive and 56.7% specific for the detection of the visual subtype of interstitial abnormalities called fibrotic parenchymal abnormalities, with a c-statistic of 0.89. In smokers, a fully automated image processing tool is able to identify those individuals who have interstitial lung abnormalities with moderate sensitivity and specificity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
直率若烟完成签到 ,获得积分10
9秒前
qiongqiong完成签到 ,获得积分10
9秒前
myq完成签到 ,获得积分10
10秒前
Zhahu完成签到 ,获得积分10
11秒前
呆萌的蚂蚁完成签到 ,获得积分10
20秒前
Hindiii完成签到,获得积分10
36秒前
qinqiqinqin勤勤完成签到 ,获得积分10
55秒前
不吃香菜完成签到 ,获得积分10
58秒前
卷卷完成签到,获得积分10
59秒前
yunzhouni完成签到,获得积分10
1分钟前
wBw完成签到,获得积分0
1分钟前
zqlxueli完成签到 ,获得积分0
1分钟前
细心妙菡完成签到 ,获得积分10
1分钟前
寒冷寻桃完成签到 ,获得积分10
1分钟前
1分钟前
海阔天空完成签到 ,获得积分10
1分钟前
柯彦完成签到 ,获得积分10
1分钟前
godccc发布了新的文献求助10
1分钟前
new1完成签到,获得积分10
1分钟前
Hua完成签到,获得积分10
1分钟前
稳重的以珊完成签到 ,获得积分10
1分钟前
科研通AI6应助Hua采纳,获得10
1分钟前
脑洞疼应助godccc采纳,获得10
1分钟前
马宇航完成签到 ,获得积分10
1分钟前
tszjw168完成签到 ,获得积分0
2分钟前
godccc完成签到,获得积分10
2分钟前
怕触电的电源完成签到 ,获得积分10
2分钟前
易一完成签到 ,获得积分10
2分钟前
启程完成签到 ,获得积分10
2分钟前
俏皮的老城完成签到 ,获得积分10
2分钟前
Karry完成签到 ,获得积分10
2分钟前
2分钟前
xue完成签到 ,获得积分10
2分钟前
卷卷发布了新的文献求助10
2分钟前
XX2完成签到,获得积分10
2分钟前
小孟吖完成签到 ,获得积分10
2分钟前
MM11111完成签到 ,获得积分10
2分钟前
啵妞完成签到 ,获得积分10
2分钟前
XX完成签到,获得积分10
2分钟前
kk完成签到 ,获得积分10
2分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5212021
求助须知:如何正确求助?哪些是违规求助? 4388268
关于积分的说明 13663723
捐赠科研通 4248672
什么是DOI,文献DOI怎么找? 2331064
邀请新用户注册赠送积分活动 1328777
关于科研通互助平台的介绍 1282024