Machine Learning for Predicting Outcomes in Trauma

观察研究 急诊分诊台 医学 严重创伤 急诊医学 心理干预 梅德林 前瞻性队列研究 重症监护医学 内科学 外科 精神科 政治学 法学
作者
Nehemiah T. Liu,José Salinas
出处
期刊:Shock [Lippincott Williams & Wilkins]
卷期号:48 (5): 504-510 被引量:106
标识
DOI:10.1097/shk.0000000000000898
摘要

To date, there are no reviews on machine learning (ML) for predicting outcomes in trauma. Consequently, it remains unclear as to how ML-based prediction models compare in the triage and assessment of trauma patients. The objective of this review was to survey and identify studies involving ML for predicting outcomes in trauma, with the hypothesis that models predicting similar outcomes may share common features but the performance of ML in these studies will differ greatly. MEDLINE and other databases were searched for studies involving trauma and ML. Sixty-five observational studies involving ML for the prediction of trauma outcomes met inclusion criteria. In total 2,433,180 patients were included in the studies. The studies focused on prediction of the following outcome measures: survival/mortality (n = 34), morbidity/shock/hemorrhage (n = 12), hospital length of stay (n = 7), hospital admission/triage (n = 6), traumatic brain injury (n = 4), life-saving interventions (n = 5), post-traumatic stress disorder (n = 4), and transfusion (n = 1). Six studies were prospective observational studies. Of the 65 studies, 33 used artificial neural networks for prediction. Importantly, most studies demonstrated the benefits of ML models. However, algorithm performance was assessed differently by different authors. Sensitivity-specificity gap values varied greatly from 0.035 to 0.927. Notably, studies shared many features for model development. A common ML feature base may be determined for predicting outcomes in trauma. However, the impact of ML will require further validation in prospective observational studies and randomized clinical trials, establishment of common performance criteria, and high-quality evidence about clinical and economic impacts before ML can be widely accepted in practice.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
wulin314完成签到,获得积分10
3秒前
Vicki完成签到,获得积分10
3秒前
Why_123完成签到,获得积分10
5秒前
嘟嘟豆806完成签到 ,获得积分0
6秒前
shuaiwen25完成签到,获得积分10
6秒前
冲冲冲完成签到,获得积分10
7秒前
洸彦完成签到 ,获得积分10
7秒前
JamesPei应助工水采纳,获得10
9秒前
浮游应助SUP编外人员采纳,获得10
10秒前
郑传伟完成签到 ,获得积分10
13秒前
852应助禾禾采纳,获得10
13秒前
学术小白完成签到 ,获得积分10
13秒前
花海完成签到,获得积分10
16秒前
17秒前
太阳花完成签到 ,获得积分10
17秒前
充电宝应助加油搬砖采纳,获得10
18秒前
浮游应助ccmxigua采纳,获得10
19秒前
爆米花应助SUP编外人员采纳,获得10
21秒前
freezing完成签到,获得积分10
21秒前
24秒前
26秒前
cleva完成签到,获得积分10
27秒前
多罗罗完成签到,获得积分10
28秒前
Emma完成签到 ,获得积分10
30秒前
123321发布了新的文献求助10
30秒前
xiaoluoluo完成签到,获得积分10
31秒前
老高完成签到 ,获得积分10
32秒前
6666完成签到 ,获得积分10
33秒前
悟樂完成签到,获得积分10
33秒前
爱听歌时光完成签到,获得积分10
35秒前
快乐电灯胆完成签到,获得积分10
39秒前
39秒前
打打应助科研通管家采纳,获得10
41秒前
斯文败类应助科研通管家采纳,获得30
41秒前
汉堡包应助科研通管家采纳,获得10
41秒前
zcl应助科研通管家采纳,获得50
42秒前
42秒前
小张同学完成签到 ,获得积分10
42秒前
慕青应助科研通管家采纳,获得10
42秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5304775
求助须知:如何正确求助?哪些是违规求助? 4451039
关于积分的说明 13850712
捐赠科研通 4338311
什么是DOI,文献DOI怎么找? 2381834
邀请新用户注册赠送积分活动 1376922
关于科研通互助平台的介绍 1344282