Generating a series of fine spatial and temporal resolution land cover maps by fusing coarse spatial resolution remotely sensed images and fine spatial resolution land cover maps

土地覆盖 图像分辨率 遥感 时间分辨率 像素 封面(代数) 空间变异性 计算机科学 地理 土地利用 计算机视觉 数学 光学 生态学 工程类 物理 统计 生物 机械工程
作者
Xiaodong Li,Feng Ling,Giles M. Foody,Yong Ge,Yihang Zhang,Yun Du
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:196: 293-311 被引量:112
标识
DOI:10.1016/j.rse.2017.05.011
摘要

Studies of land cover dynamics would benefit greatly from the generation of land cover maps at both fine spatial and temporal resolutions. Fine spatial resolution images are usually acquired relatively infrequently, whereas coarse spatial resolution images may be acquired with a high repetition rate but may not capture the spatial detail of the land cover mosaic of the region of interest. Traditional image spatial–temporal fusion methods focus on the blending of pixel spectra reflectance values and do not directly provide land cover maps or information on land cover dynamics. In this research, a novel Spatial–Temporal remotely sensed Images and land cover Maps Fusion Model (STIMFM) is proposed to produce land cover maps at both fine spatial and temporal resolutions using a series of coarse spatial resolution images together with a few fine spatial resolution land cover maps that pre- and post-date the series of coarse spatial resolution images. STIMFM integrates both the spatial and temporal dependences of fine spatial resolution pixels and outputs a series of fine spatial–temporal resolution land cover maps instead of reflectance images, which can be used directly for studies of land cover dynamics. Here, three experiments based on simulated and real remotely sensed images were undertaken to evaluate the STIMFM for studies of land cover change. These experiments included comparative assessment of methods based on single-date image such as the super-resolution approaches (e.g., pixel swapping-based super-resolution mapping) and the state-of-the-art spatial–temporal fusion approach that used the Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM) and the Flexible Spatiotemporal DAta Fusion model (FSDAF) to predict the fine-resolution images, in which the maximum likelihood classifier and the automated land cover updating approach based on integrated change detection and classification method were then applied to generate the fine-resolution land cover maps. Results show that the methods based on single-date image failed to predict the pixels of changed and unchanged land cover with high accuracy. The land cover maps that were obtained by classification of the reflectance images outputted from ESTARFM and FSDAF contained substantial misclassification, and the classification accuracy was lower for pixels of changed land cover than for pixels of unchanged land cover. In addition, STIMFM predicted fine spatial–temporal resolution land cover maps from a series of Landsat images and a few Google Earth images, to which ESTARFM and FSDAF that require correlation in reflectance bands in coarse and fine images cannot be applied. Notably, STIMFM generated higher accuracy for pixels of both changed and unchanged land cover in comparison with other methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡发布了新的文献求助10
刚刚
酶什么幺蛾子完成签到,获得积分20
刚刚
星辰大海应助man采纳,获得10
刚刚
1秒前
1秒前
科研通AI6.1应助徐啊徐采纳,获得10
1秒前
Xhhhhhh完成签到,获得积分10
1秒前
阳婷发布了新的文献求助10
1秒前
谢昊宸完成签到,获得积分10
2秒前
阿里院士发布了新的文献求助10
2秒前
李爱国应助Yeah采纳,获得10
2秒前
你好发布了新的文献求助10
2秒前
李俊枫发布了新的文献求助30
2秒前
3秒前
玛卡巴卡发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
4秒前
baby完成签到,获得积分10
4秒前
专注的元冬完成签到,获得积分20
4秒前
付品聪完成签到,获得积分10
4秒前
4秒前
懒鲸鱼发布了新的文献求助10
4秒前
大模型应助bobo采纳,获得10
4秒前
5秒前
小温发布了新的文献求助10
5秒前
青天鸟1989发布了新的文献求助10
6秒前
Criminology34应助Mryuan采纳,获得10
6秒前
Z_jx发布了新的文献求助10
6秒前
giao完成签到,获得积分10
6秒前
Mings完成签到,获得积分10
6秒前
7秒前
旋光异构完成签到,获得积分10
7秒前
喜喜完成签到,获得积分20
7秒前
7秒前
CJ完成签到,获得积分10
8秒前
9秒前
9秒前
fyc关闭了fyc文献求助
9秒前
zh发布了新的文献求助20
9秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5750825
求助须知:如何正确求助?哪些是违规求助? 5466125
关于积分的说明 15368187
捐赠科研通 4890033
什么是DOI,文献DOI怎么找? 2629516
邀请新用户注册赠送积分活动 1577711
关于科研通互助平台的介绍 1534073