Generating a series of fine spatial and temporal resolution land cover maps by fusing coarse spatial resolution remotely sensed images and fine spatial resolution land cover maps

土地覆盖 图像分辨率 遥感 时间分辨率 像素 封面(代数) 空间变异性 计算机科学 地理 土地利用 计算机视觉 数学 光学 生态学 工程类 物理 统计 生物 机械工程
作者
Xiaodong Li,Feng Ling,Giles M. Foody,Yong Ge,Yihang Zhang,Yun Du
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:196: 293-311 被引量:112
标识
DOI:10.1016/j.rse.2017.05.011
摘要

Studies of land cover dynamics would benefit greatly from the generation of land cover maps at both fine spatial and temporal resolutions. Fine spatial resolution images are usually acquired relatively infrequently, whereas coarse spatial resolution images may be acquired with a high repetition rate but may not capture the spatial detail of the land cover mosaic of the region of interest. Traditional image spatial–temporal fusion methods focus on the blending of pixel spectra reflectance values and do not directly provide land cover maps or information on land cover dynamics. In this research, a novel Spatial–Temporal remotely sensed Images and land cover Maps Fusion Model (STIMFM) is proposed to produce land cover maps at both fine spatial and temporal resolutions using a series of coarse spatial resolution images together with a few fine spatial resolution land cover maps that pre- and post-date the series of coarse spatial resolution images. STIMFM integrates both the spatial and temporal dependences of fine spatial resolution pixels and outputs a series of fine spatial–temporal resolution land cover maps instead of reflectance images, which can be used directly for studies of land cover dynamics. Here, three experiments based on simulated and real remotely sensed images were undertaken to evaluate the STIMFM for studies of land cover change. These experiments included comparative assessment of methods based on single-date image such as the super-resolution approaches (e.g., pixel swapping-based super-resolution mapping) and the state-of-the-art spatial–temporal fusion approach that used the Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM) and the Flexible Spatiotemporal DAta Fusion model (FSDAF) to predict the fine-resolution images, in which the maximum likelihood classifier and the automated land cover updating approach based on integrated change detection and classification method were then applied to generate the fine-resolution land cover maps. Results show that the methods based on single-date image failed to predict the pixels of changed and unchanged land cover with high accuracy. The land cover maps that were obtained by classification of the reflectance images outputted from ESTARFM and FSDAF contained substantial misclassification, and the classification accuracy was lower for pixels of changed land cover than for pixels of unchanged land cover. In addition, STIMFM predicted fine spatial–temporal resolution land cover maps from a series of Landsat images and a few Google Earth images, to which ESTARFM and FSDAF that require correlation in reflectance bands in coarse and fine images cannot be applied. Notably, STIMFM generated higher accuracy for pixels of both changed and unchanged land cover in comparison with other methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
光亮的冰薇完成签到 ,获得积分10
刚刚
龙阔发布了新的文献求助10
1秒前
3秒前
4秒前
lalaland完成签到,获得积分10
4秒前
5秒前
zt1812431172完成签到,获得积分10
5秒前
6秒前
李小聪发布了新的文献求助10
8秒前
赘婿应助搞份炸鸡778采纳,获得10
9秒前
Rhythm发布了新的文献求助10
9秒前
9秒前
呼延大观发布了新的文献求助10
9秒前
yangxue发布了新的文献求助10
10秒前
我是老大应助机智的思山采纳,获得10
11秒前
Tomin完成签到,获得积分10
11秒前
英俊的铭应助疯狂的荟采纳,获得10
13秒前
piccolovegeta发布了新的文献求助10
14秒前
2224536发布了新的文献求助10
15秒前
大列巴完成签到,获得积分10
15秒前
15秒前
weibo完成签到,获得积分10
16秒前
zhangweny发布了新的文献求助10
16秒前
充电宝应助搞怪的之云采纳,获得10
17秒前
17秒前
离心力完成签到,获得积分10
18秒前
嘚儿塔发布了新的文献求助10
19秒前
adeno发布了新的文献求助10
19秒前
19秒前
Luna发布了新的文献求助10
22秒前
2224536完成签到,获得积分10
25秒前
zhangweny发布了新的文献求助10
25秒前
25秒前
江铭完成签到,获得积分10
28秒前
共享精神应助自然卷采纳,获得10
29秒前
Jasper应助lilyswift采纳,获得10
30秒前
chengxue完成签到,获得积分10
30秒前
ccm应助科研通管家采纳,获得10
31秒前
xzy998应助科研通管家采纳,获得10
31秒前
arabidopsis应助科研通管家采纳,获得10
31秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Diagnostic Imaging: Pediatric Neuroradiology 2000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 720
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
Media as Procedures of Communication 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4134919
求助须知:如何正确求助?哪些是违规求助? 3671611
关于积分的说明 11609176
捐赠科研通 3367616
什么是DOI,文献DOI怎么找? 1850049
邀请新用户注册赠送积分活动 913542
科研通“疑难数据库(出版商)”最低求助积分说明 828726