Generating a series of fine spatial and temporal resolution land cover maps by fusing coarse spatial resolution remotely sensed images and fine spatial resolution land cover maps

土地覆盖 图像分辨率 遥感 时间分辨率 像素 封面(代数) 空间变异性 计算机科学 地理 土地利用 计算机视觉 数学 光学 生态学 物理 工程类 机械工程 统计 生物
作者
Xiaodong Li,Feng Ling,Giles M. Foody,Yong Ge,Yihang Zhang,Yun Du
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:196: 293-311 被引量:112
标识
DOI:10.1016/j.rse.2017.05.011
摘要

Studies of land cover dynamics would benefit greatly from the generation of land cover maps at both fine spatial and temporal resolutions. Fine spatial resolution images are usually acquired relatively infrequently, whereas coarse spatial resolution images may be acquired with a high repetition rate but may not capture the spatial detail of the land cover mosaic of the region of interest. Traditional image spatial–temporal fusion methods focus on the blending of pixel spectra reflectance values and do not directly provide land cover maps or information on land cover dynamics. In this research, a novel Spatial–Temporal remotely sensed Images and land cover Maps Fusion Model (STIMFM) is proposed to produce land cover maps at both fine spatial and temporal resolutions using a series of coarse spatial resolution images together with a few fine spatial resolution land cover maps that pre- and post-date the series of coarse spatial resolution images. STIMFM integrates both the spatial and temporal dependences of fine spatial resolution pixels and outputs a series of fine spatial–temporal resolution land cover maps instead of reflectance images, which can be used directly for studies of land cover dynamics. Here, three experiments based on simulated and real remotely sensed images were undertaken to evaluate the STIMFM for studies of land cover change. These experiments included comparative assessment of methods based on single-date image such as the super-resolution approaches (e.g., pixel swapping-based super-resolution mapping) and the state-of-the-art spatial–temporal fusion approach that used the Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM) and the Flexible Spatiotemporal DAta Fusion model (FSDAF) to predict the fine-resolution images, in which the maximum likelihood classifier and the automated land cover updating approach based on integrated change detection and classification method were then applied to generate the fine-resolution land cover maps. Results show that the methods based on single-date image failed to predict the pixels of changed and unchanged land cover with high accuracy. The land cover maps that were obtained by classification of the reflectance images outputted from ESTARFM and FSDAF contained substantial misclassification, and the classification accuracy was lower for pixels of changed land cover than for pixels of unchanged land cover. In addition, STIMFM predicted fine spatial–temporal resolution land cover maps from a series of Landsat images and a few Google Earth images, to which ESTARFM and FSDAF that require correlation in reflectance bands in coarse and fine images cannot be applied. Notably, STIMFM generated higher accuracy for pixels of both changed and unchanged land cover in comparison with other methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
MiriamYu完成签到,获得积分10
2秒前
伶俐书蝶完成签到 ,获得积分10
2秒前
lp发布了新的文献求助10
3秒前
yliu完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
Justtry完成签到,获得积分10
4秒前
CT发布了新的文献求助10
4秒前
深情安青应助shejiawei采纳,获得10
5秒前
研友_LMpo68完成签到 ,获得积分10
5秒前
5秒前
雨霧雲完成签到,获得积分10
5秒前
henibabababa完成签到,获得积分10
8秒前
555555oooo完成签到,获得积分10
8秒前
双shuang完成签到,获得积分10
8秒前
10秒前
彭于晏应助Migue采纳,获得10
10秒前
11秒前
11秒前
xiaowang发布了新的文献求助10
11秒前
确幸完成签到,获得积分10
12秒前
龍Ryu完成签到,获得积分10
12秒前
大豆终结者完成签到,获得积分10
13秒前
西门博超发布了新的文献求助10
15秒前
万万完成签到 ,获得积分10
16秒前
Benn完成签到 ,获得积分10
17秒前
姜苏婷完成签到,获得积分10
17秒前
连冷安完成签到,获得积分10
18秒前
21完成签到 ,获得积分10
18秒前
量子星尘发布了新的文献求助10
18秒前
俭朴的小熊猫完成签到,获得积分10
19秒前
20秒前
Jiahui完成签到,获得积分10
20秒前
万里完成签到,获得积分10
21秒前
mmiww完成签到,获得积分10
21秒前
玛斯特尔完成签到,获得积分10
21秒前
冯冯完成签到 ,获得积分10
22秒前
22秒前
zrrr完成签到 ,获得积分10
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482706
求助须知:如何正确求助?哪些是违规求助? 4583446
关于积分的说明 14389578
捐赠科研通 4512683
什么是DOI,文献DOI怎么找? 2473180
邀请新用户注册赠送积分活动 1459251
关于科研通互助平台的介绍 1432861