Active Sensing and Damage Classification for Wave Energy Converter Structural Composites

分层(地质) 结构健康监测 压电传感器 人口 材料科学 结构工程 计算机科学 复合材料 压电 工程类 地质学 俯冲 构造学 社会学 人口学 古生物学
作者
Kevin Farinholt,Michael Desrosiers,Mark Kim,Fritz Friedersdorf,Stephen Adams,Peter A. Beling
标识
DOI:10.1115/smasis2016-9258
摘要

Ocean resources have the potential to provide a large source of renewable energy for communities around the globe. Technologies such as wave energy converters must be designed to operate remotely in harsh environmental conditions. These structures are exposed to widely varying structural loads, and there is interest in developing monitoring systems that can identify the presence of damage, estimate its severity, and provide maintenance or control recommendations that could protect the system from failure. The research presented in this paper focuses on using the electromechanical impedance response of piezoelectric transducers to monitor the health of composite materials similar to those used in the fabrication of several wave energy converters. Techniques have been developed to detect and classify discrete damage events such as holes and slots within composite plates, as well as fatigue damage that evolves due to manufacturing flaws such as delamination and laminate waves. Using data collected over a frequency range of 100 Hz to 100 kHz, a series of genetic algorithms and statistical modeling techniques were used to classify damage type and severity. Plate studies with discrete damage (holes, notches) provided a large dataset of 113 observations comprised of seven distinct classes, one baseline and six damage severities. Random forest techniques were used to classify this population, with accuracies of 93.4% obtained. Fatigue studies of rectangular composite beams containing manufacturing defects (delamination, laminate waves), produced a measurement population of 14 instances comprised of six distinct classes. Framing this problem as the time evolution of damage due to fatigue loads allowed the use of hidden Markov models to differentiate the type of manufacturing flaw present, with results indicating 85.7% accuracy given this limited dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
One完成签到 ,获得积分10
1秒前
科研通AI2S应助chenren采纳,获得10
2秒前
2秒前
73完成签到 ,获得积分10
3秒前
风陌子若发布了新的文献求助10
4秒前
七一安完成签到 ,获得积分10
4秒前
5秒前
秋秋完成签到,获得积分10
5秒前
顾矜应助科研通管家采纳,获得10
6秒前
wyw123完成签到,获得积分10
6秒前
爆米花应助科研通管家采纳,获得10
6秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
田様应助科研通管家采纳,获得10
6秒前
SciGPT应助科研通管家采纳,获得10
6秒前
HEIKU应助科研通管家采纳,获得10
6秒前
Sevi完成签到,获得积分10
6秒前
HEIKU应助科研通管家采纳,获得10
6秒前
今后应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
HEIKU应助科研通管家采纳,获得10
7秒前
爆米花应助科研通管家采纳,获得10
7秒前
小蘑菇应助科研通管家采纳,获得10
7秒前
汉堡包应助科研通管家采纳,获得10
7秒前
7秒前
puzhongjiMiQ发布了新的文献求助10
7秒前
yy完成签到 ,获得积分10
7秒前
8秒前
8秒前
hkh发布了新的文献求助10
8秒前
果实完成签到,获得积分10
9秒前
9秒前
无尘泪完成签到,获得积分10
10秒前
10秒前
10秒前
11秒前
11秒前
11秒前
11秒前
12秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843340
求助须知:如何正确求助?哪些是违规求助? 3385634
关于积分的说明 10541427
捐赠科研通 3106276
什么是DOI,文献DOI怎么找? 1710911
邀请新用户注册赠送积分活动 823851
科研通“疑难数据库(出版商)”最低求助积分说明 774313