A New Convolutional Neural Network-Based Data-Driven Fault Diagnosis Method

卷积神经网络 计算机科学 特征提取 深度学习 断层(地质) 人工神经网络 人工智能 模式识别(心理学) 过程(计算) 滤波器(信号处理) 支持向量机 数据挖掘 机器学习 计算机视觉 地质学 操作系统 地震学
作者
Long Wen,Xinyu Li,Liang Gao,Yuyan Zhang
出处
期刊:IEEE Transactions on Industrial Electronics [Institute of Electrical and Electronics Engineers]
卷期号:65 (7): 5990-5998 被引量:1739
标识
DOI:10.1109/tie.2017.2774777
摘要

Fault diagnosis is vital in manufacturing system, since early detections on the emerging problem can save invaluable time and cost. With the development of smart manufacturing, the data-driven fault diagnosis becomes a hot topic. However, the traditional data-driven fault diagnosis methods rely on the features extracted by experts. The feature extraction process is an exhausted work and greatly impacts the final result. Deep learning (DL) provides an effective way to extract the features of raw data automatically. Convolutional neural network (CNN) is an effective DL method. In this study, a new CNN based on LeNet-5 is proposed for fault diagnosis. Through a conversion method converting signals into two-dimensional (2-D) images, the proposed method can extract the features of the converted 2-D images and eliminate the effect of handcrafted features. The proposed method which is tested on three famous datasets, including motor bearing dataset, self-priming centrifugal pump dataset, and axial piston hydraulic pump dataset, has achieved prediction accuracy of 99.79%, 99.481%, and 100%, respectively. The results have been compared with other DL and traditional methods, including adaptive deep CNN, sparse filter, deep belief network, and support vector machine. The comparisons show that the proposed CNN-based data-driven fault diagnosis method has achieved significant improvements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
Volume发布了新的文献求助10
2秒前
4秒前
fan发布了新的文献求助10
4秒前
科研通AI2S应助田园采纳,获得10
5秒前
5秒前
5秒前
模糊中正应助lJH采纳,获得30
7秒前
yolo完成签到,获得积分10
7秒前
8秒前
8秒前
9秒前
9秒前
wenyh发布了新的文献求助10
10秒前
科研通AI5应助妮妮采纳,获得10
10秒前
10秒前
西柚柠檬发布了新的文献求助10
11秒前
11秒前
13秒前
14秒前
hhh完成签到 ,获得积分20
15秒前
lxb关闭了lxb文献求助
15秒前
iron发布了新的文献求助10
16秒前
Elena发布了新的文献求助10
16秒前
文盲完成签到,获得积分10
16秒前
16秒前
大力的寻琴完成签到,获得积分10
19秒前
23秒前
23秒前
24秒前
26秒前
科研通AI5应助Hodlumm采纳,获得10
26秒前
Uni应助未何采纳,获得10
27秒前
平常的问雁完成签到 ,获得积分10
28秒前
iron发布了新的文献求助10
29秒前
xue发布了新的文献求助30
29秒前
最棒的宝宝完成签到,获得积分10
31秒前
英俊的铭应助落寞的子默采纳,获得10
31秒前
一给我哩giao完成签到,获得积分10
33秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Limes XXIII Sonderband 4 / II Proceedings of the 23rd International Congress of Roman Frontier Studies Ingolstadt 2015 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3829329
求助须知:如何正确求助?哪些是违规求助? 3372001
关于积分的说明 10470217
捐赠科研通 3091581
什么是DOI,文献DOI怎么找? 1701232
邀请新用户注册赠送积分活动 818315
科研通“疑难数据库(出版商)”最低求助积分说明 770830