Identifying tumor in pancreatic neuroendocrine neoplasms from Ki67 images using transfer learning

污渍 神经内分泌肿瘤 人工智能 病理 增殖指数 计算机科学 H&E染色 分类 免疫组织化学 增殖指数 医学 染色
作者
Muhammad Khalid Khan Niazi,Thomas E. Tavolara,Vidya Arole,Douglas J. Hartman,Liron Pantanowitz,Metin N. Gürcan
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:13 (4): e0195621-e0195621 被引量:42
标识
DOI:10.1371/journal.pone.0195621
摘要

The World Health Organization (WHO) has clear guidelines regarding the use of Ki67 index in defining the proliferative rate and assigning grade for pancreatic neuroendocrine tumor (NET). WHO mandates the quantification of Ki67 index by counting at least 500 positive tumor cells in a hotspot. Unfortunately, Ki67 antibody may stain both tumor and non-tumor cells as positive depending on the phase of the cell cycle. Likewise, the counter stain labels both tumor and non-tumor as negative. This non-specific nature of Ki67 stain and counter stain therefore hinders the exact quantification of Ki67 index. To address this problem, we present a deep learning method to automatically differentiate between NET and non-tumor regions based on images of Ki67 stained biopsies. Transfer learning was employed to recognize and apply relevant knowledge from previous learning experiences to differentiate between tumor and non-tumor regions. Transfer learning exploits a rich set of features previously used to successfully categorize non-pathology data into 1,000 classes. The method was trained and validated on a set of whole-slide images including 33 NETs subject to Ki67 immunohistochemical staining using a leave-one-out cross-validation. When applied to 30 high power fields (HPF) and assessed against a gold standard (evaluation by two expert pathologists), the method resulted in a high sensitivity of 97.8% and specificity of 88.8%. The deep learning method developed has the potential to reduce pathologists' workload by directly identifying tumor boundaries on images of Ki67 stained slides. Moreover, it has the potential to replace sophisticated and expensive imaging methods which are recently developed for identification of tumor boundaries in images of Ki67-stained NETs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苍鹰完成签到,获得积分10
3秒前
Dannerys完成签到 ,获得积分10
4秒前
笨笨梦松发布了新的文献求助10
5秒前
Leon完成签到 ,获得积分0
9秒前
9秒前
14秒前
宇老师发布了新的文献求助10
14秒前
SC发布了新的文献求助10
16秒前
18秒前
乐观健柏完成签到,获得积分10
18秒前
19秒前
dongsanmuer发布了新的文献求助10
19秒前
John完成签到 ,获得积分10
19秒前
和尘同光完成签到,获得积分10
20秒前
qqy发布了新的文献求助10
23秒前
万能图书馆应助宇老师采纳,获得10
23秒前
易止完成签到 ,获得积分10
23秒前
小龙发布了新的文献求助10
26秒前
玼桃树完成签到 ,获得积分10
28秒前
30秒前
宇老师完成签到,获得积分10
31秒前
31秒前
易水完成签到 ,获得积分10
33秒前
Luke Gee完成签到 ,获得积分10
34秒前
dongsanmuer发布了新的文献求助10
36秒前
龚尔蓝发布了新的文献求助10
37秒前
平常的毛豆应助小龙采纳,获得10
37秒前
yuuu完成签到 ,获得积分10
38秒前
张振宇完成签到 ,获得积分10
40秒前
SC完成签到,获得积分10
41秒前
十三完成签到 ,获得积分10
42秒前
上官若男应助乐鲨采纳,获得10
44秒前
44秒前
牛奶拌可乐完成签到 ,获得积分10
45秒前
Shandongdaxiu完成签到 ,获得积分10
45秒前
45秒前
初之发布了新的文献求助10
49秒前
满城烟沙完成签到 ,获得积分0
49秒前
Michael完成签到,获得积分10
50秒前
Solar energy发布了新的文献求助10
50秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779313
求助须知:如何正确求助?哪些是违规求助? 3324813
关于积分的说明 10220135
捐赠科研通 3039971
什么是DOI,文献DOI怎么找? 1668528
邀请新用户注册赠送积分活动 798717
科研通“疑难数据库(出版商)”最低求助积分说明 758503