ORIGINAL ARTICLE: Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar

刀切重采样 航程(航空) 样本量测定 环境生态位模型 物种分布 采样(信号处理) 样品(材料) 统计 生态学 生态位 生物 数学 计算机科学 栖息地 滤波器(信号处理) 材料科学 化学 估计员 复合材料 色谱法 计算机视觉
作者
Richard G. Pearson,Christopher J. Raxworthy,Miguel Nakamura,A. Townsend Peterson
出处
期刊:Journal of Biogeography [Wiley]
卷期号:34 (1): 102-117 被引量:2765
标识
DOI:10.1111/j.1365-2699.2006.01594.x
摘要

Abstract Aim Techniques that predict species potential distributions by combining observed occurrence records with environmental variables show much potential for application across a range of biogeographical analyses. Some of the most promising applications relate to species for which occurrence records are scarce, due to cryptic habits, locally restricted distributions or low sampling effort. However, the minimum sample sizes required to yield useful predictions remain difficult to determine. Here we developed and tested a novel jackknife validation approach to assess the ability to predict species occurrence when fewer than 25 occurrence records are available. Location Madagascar. Methods Models were developed and evaluated for 13 species of secretive leaf‐tailed geckos ( Uroplatus spp.) that are endemic to Madagascar, for which available sample sizes range from 4 to 23 occurrence localities (at 1 km 2 grid resolution). Predictions were based on 20 environmental data layers and were generated using two modelling approaches: a method based on the principle of maximum entropy (Maxent) and a genetic algorithm (GARP). Results We found high success rates and statistical significance in jackknife tests with sample sizes as low as five when the Maxent model was applied. Results for GARP at very low sample sizes (less than c. 10) were less good. When sample sizes were experimentally reduced for those species with the most records, variability among predictions using different combinations of localities demonstrated that models were greatly influenced by exactly which observations were included. Main conclusions We emphasize that models developed using this approach with small sample sizes should be interpreted as identifying regions that have similar environmental conditions to where the species is known to occur, and not as predicting actual limits to the range of a species. The jackknife validation approach proposed here enables assessment of the predictive ability of models built using very small sample sizes, although use of this test with larger sample sizes may lead to overoptimistic estimates of predictive power. Our analyses demonstrate that geographical predictions developed from small numbers of occurrence records may be of great value, for example in targeting field surveys to accelerate the discovery of unknown populations and species.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
huoxing完成签到 ,获得积分20
2秒前
wxr完成签到 ,获得积分10
2秒前
HN_litchi_King完成签到,获得积分10
2秒前
科研通AI5应助科研小白采纳,获得10
2秒前
忘的澜完成签到,获得积分10
2秒前
荷荷巴发布了新的文献求助10
3秒前
3秒前
TUYANG完成签到,获得积分10
4秒前
4秒前
5秒前
沐晴完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
彭佳乐发布了新的文献求助10
6秒前
夜信发布了新的文献求助10
7秒前
风中的文龙完成签到,获得积分10
7秒前
Owen应助铩羽而归采纳,获得10
7秒前
7秒前
Yuan发布了新的文献求助10
8秒前
koi发布了新的文献求助10
9秒前
无题发布了新的文献求助10
9秒前
小蘑菇应助小王采纳,获得10
9秒前
上官若男应助102755采纳,获得10
10秒前
小二郎应助大力蚂蚁采纳,获得10
10秒前
10秒前
10秒前
柔弱河马发布了新的文献求助10
10秒前
yuiip完成签到 ,获得积分10
11秒前
程南发布了新的文献求助10
11秒前
11秒前
12秒前
111完成签到,获得积分20
12秒前
严西完成签到,获得积分10
13秒前
orixero应助小星星采纳,获得10
13秒前
Qucyr完成签到,获得积分10
13秒前
GY完成签到,获得积分20
14秒前
量子星尘发布了新的文献求助10
14秒前
快乐吗猪发布了新的文献求助10
16秒前
16秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
城市流域产汇流机理及其驱动要素研究—以北京市为例 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3861239
求助须知:如何正确求助?哪些是违规求助? 3403635
关于积分的说明 10635803
捐赠科研通 3126759
什么是DOI,文献DOI怎么找? 1724309
邀请新用户注册赠送积分活动 830429
科研通“疑难数据库(出版商)”最低求助积分说明 779135