生物
基因组大小
NdhF
多年生植物
高粱
基因组
系统发育树
属
核DNA
植物
禾本科
染色体
系统发育学
遗传学
叶绿体DNA
基因
生态学
线粒体DNA
出处
期刊:Annals of Botany
[Oxford University Press]
日期:2004-12-16
卷期号:95 (1): 219-227
被引量:199
摘要
• Background and Aims The roles of variation in DNA content in plant evolution and adaptation remain a major biological enigma. Chromosome number and 2C DNA content were determined for 21 of the 25 species of the genus Sorghum and analysed from a phylogenetic perspective. • Methods DNA content was determined by flow cytometry. A Sorghum phylogeny was constructed based on combined nuclear ITS and chloroplast ndhF DNA sequences. • Key Results Chromosome counts (2n = 10, 20, 30, 40) were, with few exceptions, concordant with published numbers. New chromosome numbers were obtained for S. amplum (2n = 30) and S. leiocladum (2n = 10). 2C DNA content varies 8·1-fold (1·27–10·30 pg) among the 21 Sorghum species. 2C DNA content varies 3·6-fold from 1·27 pg to 4·60 pg among the 2n = 10 species and 5·8-fold (1·52–8·79 pg) among the 2n = 20 species. The x = 5 genome size varies over an 8·8-fold range from 0·26 pg to 2·30 pg. The mean 2C DNA content of perennial species (6·20 pg) is significantly greater than the mean (2·92 pg) of the annuals. Among the 21 species studied, the mean x = 5 genome size of annuals (1·15 pg) and of perennials (1·29 pg) is not significantly different. Statistical analysis of Australian species showed: (a) mean 2C DNA content of annual (2·89 pg) and perennial (7·73 pg) species is significantly different; (b) mean x = 5 genome size of perennials (1·66 pg) is significantly greater than that of the annuals (1·09 pg); (c) the mean maximum latitude at which perennial species grow (−25·4 degrees) is significantly greater than the mean maximum latitude (−17·6) at which annual species grow. • Conclusions The DNA sequence phylogeny splits Sorghum into two lineages, one comprising the 2n = 10 species with large genomes and their polyploid relatives, and the other with the 2n = 20, 40 species with relatively small genomes. An apparent phylogenetic reduction in genome size has occurred in the 2n = 10 lineage. Genome size evolution in the genus Sorghum apparently did not involve a ‘one way ticket to genomic obesity’ as has been proposed for the grasses.
科研通智能强力驱动
Strongly Powered by AbleSci AI