数学优化
背景(考古学)
计算机科学
选择(遗传算法)
项目组合管理
相互依存
集合(抽象数据类型)
蒙特卡罗方法
运筹学
进化算法
文件夹
有效边界
决策者
项目管理
数学
经济
机器学习
古生物学
金融经济学
管理
程序设计语言
法学
统计
生物
政治学
作者
Andrés L. Medaglia,Samuel B. Graves,Jeffrey L. Ringuest
标识
DOI:10.1016/j.ejor.2005.03.068
摘要
In the project selection problem a decision maker is required to allocate limited resources among an available set of competing projects. These projects could arise, although not exclusively, in an R&D, information technology or capital budgeting context. We propose an evolutionary method for project selection problems with partially funded projects, multiple (stochastic) objectives, project interdependencies (in the objectives), and a linear structure for resource constraints. The method is based on posterior articulation of preferences and is able to approximate the efficient frontier composed of stochastically nondominated solutions. We compared the method with the stochastic parameter space investigation method (PSI) and illustrate it by means of an R&D portfolio problem under uncertainty based on Monte Carlo simulation.
科研通智能强力驱动
Strongly Powered by AbleSci AI