Fully nonlinear internal waves in a two-fluid system

非线性系统 无粘流 欧拉方程 Korteweg–de Vries方程 物理 振幅 波长 机械 重力波 内波 经典力学 数学分析 波传播 数学 光学 热力学 量子力学
作者
Wooyoung Choi,Roberto Camassa
出处
期刊:Journal of Fluid Mechanics [Cambridge University Press]
卷期号:396: 1-36 被引量:516
标识
DOI:10.1017/s0022112099005820
摘要

Model equations that govern the evolution of internal gravity waves at the interface of two immiscible inviscid fluids are derived. These models follow from the original Euler equations under the sole assumption that the waves are long compared to the undisturbed thickness of one of the fluid layers. No smallness assumption on the wave amplitude is made. Both shallow and deep water configurations are considered, depending on whether the waves are assumed to be long with respect to the total undisturbed thickness of the fluids or long with respect to just one of the two layers, respectively. The removal of the traditional weak nonlinearity assumption is aimed at improving the agreement with the dynamics of Euler equations for large-amplitude waves. This is obtained without compromising much of the simplicity of the previously known weakly nonlinear models. Compared to these, the fully nonlinear models' most prominent feature is the presence of additional nonlinear dispersive terms, which coexist with the typical linear dispersive terms of the weakly nonlinear models. The fully nonlinear models contain the Korteweg–de Vries (KdV) equation and the Intermediate Long Wave (ILW) equation, for shallow and deep water configurations respectively, as special cases in the limit of weak nonlinearity and unidirectional wave propagation. In particular, for a solitary wave of given amplitude, the new models show that the characteristic wavelength is larger and the wave speed is smaller than their counterparts for solitary wave solutions of the weakly nonlinear equations. These features are compared and found in overall good agreement with available experimental data for solitary waves of large amplitude in two-fluid systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
俭朴八宝粥完成签到,获得积分10
1秒前
2秒前
2秒前
3秒前
wuweizhizhi完成签到,获得积分10
4秒前
ChemPhys完成签到 ,获得积分10
4秒前
4秒前
帅气乾发布了新的文献求助10
5秒前
6秒前
kister发布了新的文献求助20
6秒前
烨无殇发布了新的文献求助10
6秒前
6秒前
石幻枫完成签到 ,获得积分10
6秒前
pcwang完成签到,获得积分10
9秒前
科研通AI2S应助xiaoju采纳,获得10
10秒前
10秒前
Hello应助HK采纳,获得10
10秒前
CodeCraft应助战五渣采纳,获得10
11秒前
跳跃的野狼完成签到,获得积分10
12秒前
昊昊发布了新的文献求助10
12秒前
苏苏发布了新的文献求助10
12秒前
12秒前
量子星尘发布了新的文献求助10
13秒前
14秒前
14秒前
15秒前
ilihe应助予秋采纳,获得10
15秒前
ilihe应助予秋采纳,获得10
15秒前
彪壮的吐司完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助10
17秒前
领导范儿应助lbjkzj采纳,获得10
17秒前
可以组一辈子乐队吗完成签到,获得积分10
17秒前
17秒前
鹤轸发布了新的文献求助10
18秒前
科研通AI6.1应助研知之采纳,获得10
18秒前
隐形曼青应助肖鹏采纳,获得10
18秒前
咻咻发布了新的文献求助10
19秒前
今后应助小鱼采纳,获得10
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5777790
求助须知:如何正确求助?哪些是违规求助? 5635616
关于积分的说明 15446728
捐赠科研通 4909661
什么是DOI,文献DOI怎么找? 2641847
邀请新用户注册赠送积分活动 1589769
关于科研通互助平台的介绍 1544261