胶质2
胶质1
胶质3
生物
音猬因子
突变体
表型
转录因子
刺猬信号通路
遗传学
异位表达
突变
细胞生物学
癌症研究
基因
抑制因子
作者
H. L. Park,Chen Bai,Kenneth A. Platt,Michael P. Matise,A. Beeghly,Chi Chung Hui,Misako Nakashima,Alexandra L. Joyner
出处
期刊:Development
[The Company of Biologists]
日期:2000-04-15
卷期号:127 (8): 1593-1605
被引量:710
标识
DOI:10.1242/dev.127.8.1593
摘要
ABSTRACT The secreted factor Sonic hedgehog (SHH) is both required for and sufficient to induce multiple developmental processes, including ventralization of the CNS, branching morphogenesis of the lungs and anteroposterior patterning of the limbs. Based on analogy to the Drosophila Hh pathway, the multiple GLI transcription factors in vertebrates are likely to both transduce SHH signaling and repress Shh transcription. In order to discriminate between overlapping versus unique requirements for the three Gli genes in mice, we have produced a Gli1 mutant and analyzed the phenotypes of Gli1/Gli2 and Gli1/3 double mutants. Gli3xt mutants have polydactyly and dorsal CNS defects associated with ectopic Shh expression, indicating GLI3 plays a role in repressing Shh. In contrast, Gli2 mutants have five digits, but lack a floorplate, indicating that it is required to transduce SHH signaling in some tissues. Remarkably, mice homozygous for a Gli1zfd mutation that deletes the exons encoding the DNA-binding domain are viable and appear normal. Transgenic mice expressing a GLI1 protein lacking the zinc fingers can not induce SHH targets in the dorsal brain, indicating that the Gli1zfd allele contains a hypomorphic or null mutation. Interestingly, Gli1zfd/zfd;Gli2zfd/+, but not Gli1zfd/zfd;Gli3zfd/+ double mutants have a severe phenotype; most Gli1zfd/zfd;Gli2zfd/+ mice die soon after birth and all have multiple defects including a variable loss of ventral spinal cord cells and smaller lungs that are similar to, but less extreme than, Gli2zfd/zfd mutants. Gli1/Gli2 double homozygous mutants have more extreme CNS and lung defects than Gli1zfd/zfd;Gli2zfd/+ mutants, however, in contrast to Shh mutants, ventrolateral neurons develop in the CNS and the limbs have 5 digits with an extra postaxial nubbin. These studies demonstrate that the zinc-finger DNA-binding domain of GLI1 protein is not required for SHH signaling in mouse. Furthermore, Gli1 and Gli2, but not Gli1 and Gli3, have extensive overlapping functions that are likely downstream of SHH signaling.
科研通智能强力驱动
Strongly Powered by AbleSci AI