可解释性
数量结构-活动关系
分子描述符
计算机科学
口译(哲学)
数据挖掘
相关性
人工智能
二氢叶酸还原酶
模式识别(心理学)
机器学习
化学
数学
酶
程序设计语言
生物化学
几何学
作者
Benson M Spowage,Craig L. Bruce,Jonathan D. Hirst
标识
DOI:10.1186/1758-2946-1-22
摘要
The topological maximum cross correlation (TMACC) descriptors are alignment-independent 2D descriptors for the derivation of QSARs. TMACC descriptors are generated using atomic properties determined by molecular topology. Previous validation (J Chem Inf Model 2007, 47: 626-634) of the TMACC descriptor suggests it is competitive with the current state of the art. Here, we illustrate the interpretability of the TMACC descriptors, through the analysis of the QSARs of inhibitors of angiotensin converting enzyme (ACE) and dihydrofolate reductase (DHFR). In the case of the ACE inhibitors, the TMACC interpretation shows features specific to C-domain inhibition, which have not been explicitly identified in previous QSAR studies. The TMACC interpretation can provide new insight into the structure-activity relationships studied. Freely available, open source software for generating the TMACC descriptors can be downloaded from http://comp.chem.nottingham.ac.uk .
科研通智能强力驱动
Strongly Powered by AbleSci AI